From 379c2f35bbb8e8b92b60beaaa54798cd3650dc64 Mon Sep 17 00:00:00 2001 From: Man Zhang Date: Thu, 27 Feb 2020 11:27:38 -0700 Subject: [PATCH 01/14] scientific documentation update for UFS public release, add two additional xml files for GFSv15p2 and GFSv16beta --- physics/cires_ugwp.F90 | 2 +- physics/docs/library.bib | 501 ++++++++++-------- physics/docs/pdftxt/GFS_UGWPv0.txt | 117 ++++ physics/docs/pdftxt/GFSv15p2_suite.txt | 133 +++++ physics/docs/pdftxt/GFSv16beta_suite.txt | 176 ++++++ .../docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt | 101 ++++ .../suite_FV3_GFS_v15p2_no_nsst.xml.txt | 100 ++++ .../docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt | 101 ++++ .../suite_FV3_GFS_v16beta_no_nsst.xml.txt | 98 ++++ physics/docs/pdftxt/suite_input.nml.txt | 107 +++- physics/docs/ufs_doxyfile | 464 ++++++++++++++++ physics/sfc_nst.f | 9 +- physics/sfc_ocean.F | 16 +- 13 files changed, 1667 insertions(+), 258 deletions(-) create mode 100644 physics/docs/pdftxt/GFS_UGWPv0.txt create mode 100644 physics/docs/pdftxt/GFSv15p2_suite.txt create mode 100644 physics/docs/pdftxt/GFSv16beta_suite.txt create mode 100644 physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt create mode 100644 physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt create mode 100644 physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt create mode 100644 physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt create mode 100644 physics/docs/ufs_doxyfile diff --git a/physics/cires_ugwp.F90 b/physics/cires_ugwp.F90 index e0abc58ff..ac12764cc 100644 --- a/physics/cires_ugwp.F90 +++ b/physics/cires_ugwp.F90 @@ -146,7 +146,7 @@ end subroutine cires_ugwp_finalize !! \htmlinclude cires_ugwp_run.html !! -! subroutines original +!>\section gen_cires_ugwp CIRES UGWP General Algorithm subroutine cires_ugwp_run(do_ugwp, me, master, im, levs, ntrac, dtp, kdt, lonr, & oro, oro_uf, hprime, nmtvr, oc, theta, sigma, gamma, elvmax, clx, oa4, & do_tofd, ldiag_ugwp, cdmbgwd, xlat, xlat_d, sinlat, coslat, area, & diff --git a/physics/docs/library.bib b/physics/docs/library.bib index 7384e08a0..cfc3e3304 100644 --- a/physics/docs/library.bib +++ b/physics/docs/library.bib @@ -1,7 +1,7 @@ %% This BibTeX bibliography file was created using BibDesk. -%% https://bibdesk.sourceforge.io/ +%% http://bibdesk.sourceforge.net/ -%% Created for Grant Firl at 2019-10-25 16:36:06 -0600 +%% Created for Man Zhang at 2020-02-24 10:07:00 -0700 %% Saved with string encoding Unicode (UTF-8) @@ -2016,11 +2016,11 @@ @url{Li_2015 Url = {http://cpo.noaa.gov/sites/cpo/MAPP/workshops/rtf_technical_ws/presentations/21_Xu_Li.pdf}, Bdsk-Url-1 = {http://cpo.noaa.gov/sites/cpo/MAPP/workshops/rtf_technical_ws/presentations/21_Xu_Li.pdf}} -@url{li_and_derber_2009, +@webpage{li_and_derber_2009, Author = {Xu Li and John Derber}, - Date-Modified = {2018-07-17 20:46:44 +0000}, + Date-Modified = {2020-02-24 17:06:35 +0000}, Title = {Near Sea Surface Temperatures (NSST) Analysis in NCEP GFS}, - Url = {https://www.jcsda.noaa.gov/documents/meetings/wkshp2008/4/JCSDA_2008_Li.pdf}, + Url = {http://data.jcsda.org/Workshops/6th-workshop-onDA/Session-4/JCSDA_2008_Li.pdf}, Bdsk-Url-1 = {https://www.jcsda.noaa.gov/documents/meetings/wkshp2008/4/JCSDA_2008_Li.pdf}} @article{Fairall_et_al_1996, @@ -2892,273 +2892,308 @@ @article{hu_and_stamnes_1993 Year = {1993}} @article{alexander_et_al_2010, - author = {Alexander, M. J. and Geller, M. and McLandress, C. and Polavarapu, S. and Preusse, P. and Sassi, F. and Sato, K. and Eckermann, S. and Ern, M. and Hertzog, A. and Kawatani, Y. and Pulido, M. and Shaw, T. A. and Sigmond, M. and Vincent, R. and Watanabe, S.}, - title = {Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models}, - journal = {Quarterly Journal of the Royal Meteorological Society}, - volume = {136}, - number = {650}, - pages = {1103-1124}, - keywords = {atmosphere, gravity wave, momentum flux, drag, force, wind tendency, climate, global model}, - doi = {10.1002/qj.637}, - url = {https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.637}, - eprint = {https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.637}, - year = {2010}} + Author = {Alexander, M. J. and Geller, M. and McLandress, C. and Polavarapu, S. and Preusse, P. and Sassi, F. and Sato, K. and Eckermann, S. and Ern, M. and Hertzog, A. and Kawatani, Y. and Pulido, M. and Shaw, T. A. and Sigmond, M. and Vincent, R. and Watanabe, S.}, + Doi = {10.1002/qj.637}, + Eprint = {https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.637}, + Journal = {Quarterly Journal of the Royal Meteorological Society}, + Keywords = {atmosphere, gravity wave, momentum flux, drag, force, wind tendency, climate, global model}, + Number = {650}, + Pages = {1103-1124}, + Title = {Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models}, + Url = {https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.637}, + Volume = {136}, + Year = {2010}, + Bdsk-Url-1 = {https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.637}, + Bdsk-Url-2 = {http://dx.doi.org/10.1002/qj.637}} @article{plougonven_and_zhang_2014, - author = {Plougonven, R. and Zhang, F.}, - title = {Internal gravity waves from atmospheric jets and fronts}, - journal = {Reviews of Geophysics}, - volume = {52}, - number = {1}, - pages = {33-76}, - keywords = {gravity waves, stratosphere, atmosphere, jets, fronts, weather}, - doi = {10.1002/2012RG000419}, - url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2012RG000419}, - eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2012RG000419}, - year = {2014}} + Author = {Plougonven, R. and Zhang, F.}, + Doi = {10.1002/2012RG000419}, + Eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2012RG000419}, + Journal = {Reviews of Geophysics}, + Keywords = {gravity waves, stratosphere, atmosphere, jets, fronts, weather}, + Number = {1}, + Pages = {33-76}, + Title = {Internal gravity waves from atmospheric jets and fronts}, + Url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2012RG000419}, + Volume = {52}, + Year = {2014}, + Bdsk-Url-1 = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2012RG000419}, + Bdsk-Url-2 = {http://dx.doi.org/10.1002/2012RG000419}} @article{weinstock_1984, - author = {Weinstock, J.}, - title = {Simplified derivation of an algorithm for nonlinear gravity waves}, - journal = {Journal of Geophysical Research: Space Physics}, - volume = {89}, - number = {A1}, - pages = {345-350}, - doi = {10.1029/JA089iA01p00345}, - url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA089iA01p00345}, - eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JA089iA01p00345}, - year = {1984}} + Author = {Weinstock, J.}, + Doi = {10.1029/JA089iA01p00345}, + Eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JA089iA01p00345}, + Journal = {Journal of Geophysical Research: Space Physics}, + Number = {A1}, + Pages = {345-350}, + Title = {Simplified derivation of an algorithm for nonlinear gravity waves}, + Url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA089iA01p00345}, + Volume = {89}, + Year = {1984}, + Bdsk-Url-1 = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA089iA01p00345}, + Bdsk-Url-2 = {http://dx.doi.org/10.1029/JA089iA01p00345}} @article{holton_1983, - author = {Holton, James R.}, - title = {The Influence of Gravity Wave Breaking on the General Circulation of the Middle Atmosphere}, - journal = {Journal of the Atmospheric Sciences}, - volume = {40}, - number = {10}, - pages = {2497-2507}, - year = {1983}, - doi = {10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}, - URL = {https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}, - eprint = {https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}} + Author = {Holton, James R.}, + Doi = {10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}, + Eprint = {https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}, + Journal = {Journal of the Atmospheric Sciences}, + Number = {10}, + Pages = {2497-2507}, + Title = {The Influence of Gravity Wave Breaking on the General Circulation of the Middle Atmosphere}, + Url = {https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}, + Volume = {40}, + Year = {1983}, + Bdsk-Url-1 = {https://doi.org/10.1175/1520-0469(1983)040%3C2497:TIOGWB%3E2.0.CO;2}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(1983)040%3C2497:TIOGWB%3E2.0.CO;2}} @article{geller_et_al_2013, - author = {Geller, M. A. and Alexander, M. Joan and Love, P. T. and Bacmeister, J. and Ern, M. and Hertzog, A. and Manzini, E. and Preusse, P. and Sato, K. and Scaife, A. A. and Zhou, T.}, - title = {A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models}, - journal = {Journal of Climate}, - volume = {26}, - number = {17}, - pages = {6383-6405}, - year = {2013}, - doi = {10.1175/JCLI-D-12-00545.1}, - URL = {https://doi.org/10.1175/JCLI-D-12-00545.1}, - eprint = {https://doi.org/10.1175/JCLI-D-12-00545.1}} + Author = {Geller, M. A. and Alexander, M. Joan and Love, P. T. and Bacmeister, J. and Ern, M. and Hertzog, A. and Manzini, E. and Preusse, P. and Sato, K. and Scaife, A. A. and Zhou, T.}, + Doi = {10.1175/JCLI-D-12-00545.1}, + Eprint = {https://doi.org/10.1175/JCLI-D-12-00545.1}, + Journal = {Journal of Climate}, + Number = {17}, + Pages = {6383-6405}, + Title = {A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models}, + Url = {https://doi.org/10.1175/JCLI-D-12-00545.1}, + Volume = {26}, + Year = {2013}, + Bdsk-Url-1 = {https://doi.org/10.1175/JCLI-D-12-00545.1}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/JCLI-D-12-00545.1}} @article{garcia_et_al_2017, - author = {Garcia, R. R. and Smith, A. K. and Kinnison, D. E. and Cámara, Á. and Murphy, D. J.}, - title = {Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results}, - journal = {Journal of the Atmospheric Sciences}, - volume = {74}, - number = {1}, - pages = {275-291}, - year = {2017}, - doi = {10.1175/JAS-D-16-0104.1}, - URL = {https://doi.org/10.1175/JAS-D-16-0104.1}, - eprint = {https://doi.org/10.1175/JAS-D-16-0104.1}} + Author = {Garcia, R. R. and Smith, A. K. and Kinnison, D. E. and C{\'a}mara, {\'A}. and Murphy, D. J.}, + Doi = {10.1175/JAS-D-16-0104.1}, + Eprint = {https://doi.org/10.1175/JAS-D-16-0104.1}, + Journal = {Journal of the Atmospheric Sciences}, + Number = {1}, + Pages = {275-291}, + Title = {Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results}, + Url = {https://doi.org/10.1175/JAS-D-16-0104.1}, + Volume = {74}, + Year = {2017}, + Bdsk-Url-1 = {https://doi.org/10.1175/JAS-D-16-0104.1}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/JAS-D-16-0104.1}} @inproceedings{yudin_et_al_2016, - title={Gravity wave physics in the NOAA Environmental Modeling System}, - author={Yudin, V.A. and Akmaev, R.A. and Fuller-Rowell, T.J. and Alpert, J.C.}, - booktitle={International SPARC Gravity Wave Symposium}, - volume={48}, - number={1}, - pages={012024}, - year={2016}, - organization={}} + Author = {Yudin, V.A. and Akmaev, R.A. and Fuller-Rowell, T.J. and Alpert, J.C.}, + Booktitle = {International SPARC Gravity Wave Symposium}, + Number = {1}, + Pages = {012024}, + Title = {Gravity wave physics in the NOAA Environmental Modeling System}, + Volume = {48}, + Year = {2016}} @inproceedings{alpert_et_al_2018, - title={Integrating Unified Gravity Wave Physics Research into the Next Generation Global Prediction System for NCEP Research to Operations}, - author={Alpert, Jordan C and Yudin, Valery and Fuller-Rowell, Tim and Akmaev, Rashid A}, - booktitle={98th American Meteorological Society Annual Meeting}, - year={2018}, - organization={AMS}} + Author = {Alpert, Jordan C and Yudin, Valery and Fuller-Rowell, Tim and Akmaev, Rashid A}, + Booktitle = {98th American Meteorological Society Annual Meeting}, + Organization = {AMS}, + Title = {Integrating Unified Gravity Wave Physics Research into the Next Generation Global Prediction System for NCEP Research to Operations}, + Year = {2018}} @article{eckermann_2011, - author = {Eckermann, Stephen D.}, - title = {Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag}, - journal = {Journal of the Atmospheric Sciences}, - volume = {68}, - number = {8}, - pages = {1749-1765}, - year = {2011}, - doi = {10.1175/2011JAS3684.1}, - URL = {https://doi.org/10.1175/2011JAS3684.1}, - eprint = {https://doi.org/10.1175/2011JAS3684.1}} + Author = {Eckermann, Stephen D.}, + Doi = {10.1175/2011JAS3684.1}, + Eprint = {https://doi.org/10.1175/2011JAS3684.1}, + Journal = {Journal of the Atmospheric Sciences}, + Number = {8}, + Pages = {1749-1765}, + Title = {Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag}, + Url = {https://doi.org/10.1175/2011JAS3684.1}, + Volume = {68}, + Year = {2011}, + Bdsk-Url-1 = {https://doi.org/10.1175/2011JAS3684.1}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/2011JAS3684.1}} @article{lott_et_al_2012, - author = {Lott, F. and Guez, L. and Maury, P.}, - title = {A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere}, - journal = {Geophysical Research Letters}, - volume = {39}, - number = {6}, - pages = {}, - keywords = {Quasi-Biennial Oscillation, Rossby-gravity waves, gravity waves, stochastic parameterization, stratospheric dynamics}, - doi = {10.1029/2012GL051001}, - url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051001}, - eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012GL051001}, - year = {2012}} + Author = {Lott, F. and Guez, L. and Maury, P.}, + Doi = {10.1029/2012GL051001}, + Eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012GL051001}, + Journal = {Geophysical Research Letters}, + Keywords = {Quasi-Biennial Oscillation, Rossby-gravity waves, gravity waves, stochastic parameterization, stratospheric dynamics}, + Number = {6}, + Title = {A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere}, + Url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051001}, + Volume = {39}, + Year = {2012}, + Bdsk-Url-1 = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051001}, + Bdsk-Url-2 = {http://dx.doi.org/10.1029/2012GL051001}} @conference{yudin_et_al_2018, - author = {Yudin, V. A and Akmaev, R. A. and Alpert, J. C. and Fuller-Rowell T. J., and Karol S. I.}, - Booktitle = {25th Conference on Numerical Weather Prediction}, - Date-Added = {2018-06-04 10:50:44 -0600}, - Date-Modified = {2018-06-04 10:54:39 -0600}, - Editor = {Am. Meteorol. Soc.}, - Title = {Gravity Wave Physics and Dynamics in the FV3-based Atmosphere Models Extended into the Mesosphere}, - Year = {2018}} + Author = {Yudin, V. A and Akmaev, R. A. and Alpert, J. C. and Fuller-Rowell T. J., and Karol S. I.}, + Booktitle = {25th Conference on Numerical Weather Prediction}, + Date-Added = {2018-06-04 10:50:44 -0600}, + Date-Modified = {2018-06-04 10:54:39 -0600}, + Editor = {Am. Meteorol. Soc.}, + Title = {Gravity Wave Physics and Dynamics in the FV3-based Atmosphere Models Extended into the Mesosphere}, + Year = {2018}} @article{hines_1997, - title = "Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation", - journal = "Journal of Atmospheric and Solar-Terrestrial Physics", - volume = "59", - number = "4", - pages = "387 - 400", - year = "1997", - issn = "1364-6826", - doi = "https://doi.org/10.1016/S1364-6826(96)00080-6", - url = "http://www.sciencedirect.com/science/article/pii/S1364682696000806", - author = "Colin O. Hines"} + Author = {Colin O. Hines}, + Doi = {https://doi.org/10.1016/S1364-6826(96)00080-6}, + Issn = {1364-6826}, + Journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, + Number = {4}, + Pages = {387 - 400}, + Title = {Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation}, + Url = {http://www.sciencedirect.com/science/article/pii/S1364682696000806}, + Volume = {59}, + Year = {1997}, + Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S1364682696000806}, + Bdsk-Url-2 = {https://doi.org/10.1016/S1364-6826(96)00080-6}} @article{alexander_and_dunkerton_1999, - author = {Alexander, M. J. and Dunkerton, T. J.}, - title = {A Spectral Parameterization of Mean-Flow Forcing due to Breaking Gravity Waves}, - journal = {Journal of the Atmospheric Sciences}, - volume = {56}, - number = {24}, - pages = {4167-4182}, - year = {1999}, - doi = {10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2}, - URL = {https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2}, - eprint = {https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2}} + Author = {Alexander, M. J. and Dunkerton, T. J.}, + Doi = {10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2}, + Eprint = {https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2}, + Journal = {Journal of the Atmospheric Sciences}, + Number = {24}, + Pages = {4167-4182}, + Title = {A Spectral Parameterization of Mean-Flow Forcing due to Breaking Gravity Waves}, + Url = {https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2}, + Volume = {56}, + Year = {1999}, + Bdsk-Url-1 = {https://doi.org/10.1175/1520-0469(1999)056%3C4167:ASPOMF%3E2.0.CO;2}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(1999)056%3C4167:ASPOMF%3E2.0.CO;2}} @article{scinocca_2003, - author = {Scinocca, John F.}, - title = {An Accurate Spectral Nonorographic Gravity Wave Drag Parameterization for General Circulation Models}, - journal = {Journal of the Atmospheric Sciences}, - volume = {60}, - number = {4}, - pages = {667-682}, - year = {2003}, - doi = {10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}, - URL = {https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}, - eprint = {https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}} + Author = {Scinocca, John F.}, + Doi = {10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}, + Eprint = {https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}, + Journal = {Journal of the Atmospheric Sciences}, + Number = {4}, + Pages = {667-682}, + Title = {An Accurate Spectral Nonorographic Gravity Wave Drag Parameterization for General Circulation Models}, + Url = {https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}, + Volume = {60}, + Year = {2003}, + Bdsk-Url-1 = {https://doi.org/10.1175/1520-0469(2003)060%3C0667:AASNGW%3E2.0.CO;2}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(2003)060%3C0667:AASNGW%3E2.0.CO;2}} @article{shaw_and_shepherd_2009, - author = {Shaw, Tiffany A. and Shepherd, Theodore G.}, - title = {A Theoretical Framework for Energy and Momentum Consistency in Subgrid-Scale Parameterization for Climate Models}, - journal = {Journal of the Atmospheric Sciences}, - volume = {66}, - number = {10}, - pages = {3095-3114}, - year = {2009}, - doi = {10.1175/2009JAS3051.1}, - URL = {https://doi.org/10.1175/2009JAS3051.1}, - eprint = {https://doi.org/10.1175/2009JAS3051.1}} - -@Article{molod_et_al_2015, - AUTHOR = {Molod, A. and Takacs, L. and Suarez, M. and Bacmeister, J.}, - TITLE = {Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2}, - JOURNAL = {Geoscientific Model Development}, - VOLUME = {8}, - YEAR = {2015}, - NUMBER = {5}, - PAGES = {1339--1356}, - URL = {https://www.geosci-model-dev.net/8/1339/2015/}, - DOI = {10.5194/gmd-8-1339-2015}} + Author = {Shaw, Tiffany A. and Shepherd, Theodore G.}, + Doi = {10.1175/2009JAS3051.1}, + Eprint = {https://doi.org/10.1175/2009JAS3051.1}, + Journal = {Journal of the Atmospheric Sciences}, + Number = {10}, + Pages = {3095-3114}, + Title = {A Theoretical Framework for Energy and Momentum Consistency in Subgrid-Scale Parameterization for Climate Models}, + Url = {https://doi.org/10.1175/2009JAS3051.1}, + Volume = {66}, + Year = {2009}, + Bdsk-Url-1 = {https://doi.org/10.1175/2009JAS3051.1}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/2009JAS3051.1}} + +@article{molod_et_al_2015, + Author = {Molod, A. and Takacs, L. and Suarez, M. and Bacmeister, J.}, + Doi = {10.5194/gmd-8-1339-2015}, + Journal = {Geoscientific Model Development}, + Number = {5}, + Pages = {1339--1356}, + Title = {Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2}, + Url = {https://www.geosci-model-dev.net/8/1339/2015/}, + Volume = {8}, + Year = {2015}, + Bdsk-Url-1 = {https://www.geosci-model-dev.net/8/1339/2015/}, + Bdsk-Url-2 = {http://dx.doi.org/10.5194/gmd-8-1339-2015}} @article{richter_et_al_2010, - author = {Richter, Jadwiga H. and Sassi, Fabrizio and Garcia, Rolando R.}, - title = {Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model}, - journal = {Journal of the Atmospheric Sciences}, - volume = {67}, - number = {1}, - pages = {136-156}, - year = {2010}, - doi = {10.1175/2009JAS3112.1}, - URL = {https://doi.org/10.1175/2009JAS3112.1}, - eprint = {https://doi.org/10.1175/2009JAS3112.1}} + Author = {Richter, Jadwiga H. and Sassi, Fabrizio and Garcia, Rolando R.}, + Doi = {10.1175/2009JAS3112.1}, + Eprint = {https://doi.org/10.1175/2009JAS3112.1}, + Journal = {Journal of the Atmospheric Sciences}, + Number = {1}, + Pages = {136-156}, + Title = {Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model}, + Url = {https://doi.org/10.1175/2009JAS3112.1}, + Volume = {67}, + Year = {2010}, + Bdsk-Url-1 = {https://doi.org/10.1175/2009JAS3112.1}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/2009JAS3112.1}} @article{richter_et_al_2014, - author = {Richter, Jadwiga H. and Solomon, Abraham and Bacmeister, Julio T.}, - title = {Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5}, - journal = {Journal of Advances in Modeling Earth Systems}, - volume = {6}, - number = {2}, - pages = {357-383}, - keywords = {climate modeling, vertical resolution, modeling, climate, global circulation model, general circulation model}, - doi = {10.1002/2013MS000303}, - url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013MS000303}, - eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013MS000303}, - year = {2014}} + Author = {Richter, Jadwiga H. and Solomon, Abraham and Bacmeister, Julio T.}, + Doi = {10.1002/2013MS000303}, + Eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013MS000303}, + Journal = {Journal of Advances in Modeling Earth Systems}, + Keywords = {climate modeling, vertical resolution, modeling, climate, global circulation model, general circulation model}, + Number = {2}, + Pages = {357-383}, + Title = {Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5}, + Url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013MS000303}, + Volume = {6}, + Year = {2014}, + Bdsk-Url-1 = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013MS000303}, + Bdsk-Url-2 = {http://dx.doi.org/10.1002/2013MS000303}} @article{gelaro_et_al_2017, - author = {Gelaro, et al.}, - title = {The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)}, - journal = {Journal of Climate}, - volume = {30}, - number = {14}, - pages = {5419-5454}, - year = {2017}, - doi = {10.1175/JCLI-D-16-0758.1}, - URL = {https://doi.org/10.1175/JCLI-D-16-0758.1}, - eprint = {https://doi.org/10.1175/JCLI-D-16-0758.1}} + Author = {Gelaro, et al.}, + Doi = {10.1175/JCLI-D-16-0758.1}, + Eprint = {https://doi.org/10.1175/JCLI-D-16-0758.1}, + Journal = {Journal of Climate}, + Number = {14}, + Pages = {5419-5454}, + Title = {The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)}, + Url = {https://doi.org/10.1175/JCLI-D-16-0758.1}, + Volume = {30}, + Year = {2017}, + Bdsk-Url-1 = {https://doi.org/10.1175/JCLI-D-16-0758.1}, + Bdsk-Url-2 = {http://dx.doi.org/10.1175/JCLI-D-16-0758.1}} @article{garcia_et_al_2007, - author = {Garcia, R. R. and Marsh, D. R. and Kinnison, D. E. and Boville, B. A. and Sassi, F.}, - title = {Simulation of secular trends in the middle atmosphere, 1950–2003}, - journal = {Journal of Geophysical Research: Atmospheres}, - volume = {112}, - number = {D9}, - pages = {}, - keywords = {global change, ozone depletion, water vapor trends, temperature trends}, - doi = {10.1029/2006JD007485}, - url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JD007485}, - eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JD007485}, - year = {2007}} + Author = {Garcia, R. R. and Marsh, D. R. and Kinnison, D. E. and Boville, B. A. and Sassi, F.}, + Doi = {10.1029/2006JD007485}, + Eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JD007485}, + Journal = {Journal of Geophysical Research: Atmospheres}, + Keywords = {global change, ozone depletion, water vapor trends, temperature trends}, + Number = {D9}, + Title = {Simulation of secular trends in the middle atmosphere, 1950--2003}, + Url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JD007485}, + Volume = {112}, + Year = {2007}, + Bdsk-Url-1 = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JD007485}, + Bdsk-Url-2 = {http://dx.doi.org/10.1029/2006JD007485}} @article{eckermann_et_al_2009, - title = "High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007", - journal = "Journal of Atmospheric and Solar-Terrestrial Physics", - volume = "71", - number = "3", - pages = "531 - 551", - year = "2009", - note = "Global Perspectives on the Aeronomy of the Summer Mesopause Region", - issn = "1364-6826", - doi = "https://doi.org/10.1016/j.jastp.2008.09.036", - url = "http://www.sciencedirect.com/science/article/pii/S1364682608002575", - author = "Stephen D. Eckermann and Karl W. Hoppel and Lawrence Coy and John P. McCormack and David E. Siskind and Kim Nielsen and Andrew Kochenash and Michael H. Stevens and Christoph R. Englert and Werner Singer and Mark Hervig", - keywords = "Data assimilation, Polar mesospheric cloud, Tide, Planetary wave, Mesosphere",} + Author = {Stephen D. Eckermann and Karl W. Hoppel and Lawrence Coy and John P. McCormack and David E. Siskind and Kim Nielsen and Andrew Kochenash and Michael H. Stevens and Christoph R. Englert and Werner Singer and Mark Hervig}, + Doi = {https://doi.org/10.1016/j.jastp.2008.09.036}, + Issn = {1364-6826}, + Journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, + Keywords = {Data assimilation, Polar mesospheric cloud, Tide, Planetary wave, Mesosphere}, + Note = {Global Perspectives on the Aeronomy of the Summer Mesopause Region}, + Number = {3}, + Pages = {531 - 551}, + Title = {High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007}, + Url = {http://www.sciencedirect.com/science/article/pii/S1364682608002575}, + Volume = {71}, + Year = {2009}, + Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S1364682608002575}, + Bdsk-Url-2 = {https://doi.org/10.1016/j.jastp.2008.09.036}} @inproceedings{alpert_et_al_2019, - title={Atmospheric Gravity Wave Sources Correlated with Resolved-scale GW Activity and Sub-grid Scale Parameterization in the FV3gfs Model}, - author={Alpert, Jordan C and Yudin, Valery A and Strobach, Edward}, - booktitle={AGU Fall Meeting 2019}, - year={2019}, - organization={AGU}} - -@Article{ern_et_al_2018, - AUTHOR = {Ern, M. and Trinh, Q. T. and Preusse, P. and Gille, J. C. and Mlynczak, M. G. and Russell III, J. M. and Riese, M.}, - TITLE = {GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings}, - JOURNAL = {Earth System Science Data}, - VOLUME = {10}, - YEAR = {2018}, - NUMBER = {2}, - PAGES = {857--892}, - URL = {https://www.earth-syst-sci-data.net/10/857/2018/}, - DOI = {10.5194/essd-10-857-2018}} + Author = {Alpert, Jordan C and Yudin, Valery A and Strobach, Edward}, + Booktitle = {AGU Fall Meeting 2019}, + Organization = {AGU}, + Title = {Atmospheric Gravity Wave Sources Correlated with Resolved-scale GW Activity and Sub-grid Scale Parameterization in the FV3gfs Model}, + Year = {2019}} + +@article{ern_et_al_2018, + Author = {Ern, M. and Trinh, Q. T. and Preusse, P. and Gille, J. C. and Mlynczak, M. G. and Russell III, J. M. and Riese, M.}, + Doi = {10.5194/essd-10-857-2018}, + Journal = {Earth System Science Data}, + Number = {2}, + Pages = {857--892}, + Title = {GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings}, + Url = {https://www.earth-syst-sci-data.net/10/857/2018/}, + Volume = {10}, + Year = {2018}, + Bdsk-Url-1 = {https://www.earth-syst-sci-data.net/10/857/2018/}, + Bdsk-Url-2 = {http://dx.doi.org/10.5194/essd-10-857-2018}} @inproceedings{yudin_et_al_2019, - title={Longitudinal Variability of Wave Dynamics in Weather Models Extended into the Mesosphere and Thermosphere}, - author={Yudin V.A. , S. I. Karol, R.A. Akmaev, T. Fuller-Rowell, D. Kleist, A. Kubaryk, and C. Thompson}, - booktitle={Space Weather Workshop}, - year={2019},} + Author = {Yudin V.A. , S. I. Karol, R.A. Akmaev, T. Fuller-Rowell, D. Kleist, A. Kubaryk, and C. Thompson}, + Booktitle = {Space Weather Workshop}, + Title = {Longitudinal Variability of Wave Dynamics in Weather Models Extended into the Mesosphere and Thermosphere}, + Year = {2019}} diff --git a/physics/docs/pdftxt/GFS_UGWPv0.txt b/physics/docs/pdftxt/GFS_UGWPv0.txt new file mode 100644 index 000000000..e6ea3b6f4 --- /dev/null +++ b/physics/docs/pdftxt/GFS_UGWPv0.txt @@ -0,0 +1,117 @@ +/** +\page GFS_UGWP_v0 CIRES Unified Gravity Wave Physics Scheme - Version 0 +\section des_UGWP Description + +Gravity waves (GWs) are generated by a variety of sources in the atmosphere +including orographic GWs (OGWs; quasi-stationary waves) and non-orographic +GWs (NGWs; non-stationary oscillations). When the Version 0 of the Unified +Gravity Wave Physics (UGWP v0) is invoked, the subgrid OGWs and NGWs are +parameterized. For the subgrid-scale parameterization of OGWs, the UGWP +invokes a separate scheme, the \subpage GFS_GWDPS, which is used in the operational +Global Forecast System (GFS) version 15. + +The NGW physics scheme parameterizes the effects of non-stationary waves +unresolved by dynamical cores. These non-stationary oscillations with periods +bounded by Coriolis and Brunt-Väisälä frequencies and typical horizontal +scales from tens to several hundreds of kilometers, are forced by the +imbalance of convective and frontal/jet dynamics in the troposphere and +lower stratosphere (Fritts 1984 \cite fritts_1984; Alexander et al. +2010 \cite alexander_et_al_2010; Plougonven and Zhang 2014 \cite plougonven_and_zhang_2014). +The NGWs propagate upwards and the amplitudes exponentially grow with +altitude until instability and breaking of waves occur. Convective and +dynamical instability induced by GWs with large amplitudes can trigger +production of small-scale turbulence and self-destruction of waves. +The latter process in the theory of atmospheric GWs is frequently referred +as the wave saturation (Lindzen 1981 \cite lindzen_1981; Weinstock +1984 \cite weinstock_1984; Fritts 1984 \cite fritts_1984). Herein, +“saturation” or "breaking" refers to any processes that act to reduce +wave amplitudes due to instabilities and/or interactions arising from +large-amplitude perturbations limiting the exponential growth of GWs +with height. Background dissipation processes such as molecular diffusion +and radiative cooling, in contrast, act independently of GW amplitudes. +In the middle atmosphere, impacts of NGW saturation (or breaking) and +dissipation on the large-scale circulation, mixing, and transport have +been acknowledged in the physics of global weather and climate models +after pioneering studies by Lindzen 1981 \cite lindzen_1981 and Holton +1983 \cite holton_1983. Comprehensive reviews on the physics of NGWs +and OGWs in climate and weather models have been discussted in Alexander +et al. 2010 \cite alexander_et_al_2010, Geller et al. +2013 \cite geller_et_al_2013, and Garcia et al. 2017 \cite garcia_et_al_2017. +They are formulated using different aspects of the nonlinear and linear +propagation, instability, breaking and dissipation of waves along with +different specifications of GW sources (Garcia et al. 2007 \cite garcia_et_al_2007; +Richter et al 2010 \cite richter_et_al_2010; Eckermann et al. +2009 \cite eckermann_et_al_2009; Eckermann 2011 \cite eckermann_2011; +Lott et al. 2012 \cite lott_et_al_2012). + +Several studies have demonstrated the importance of NGW physics to improve +model predictions in the stratosphere and upper atmosphere (Alexander et al. + 2010 \cite alexander_et_al_2010; Geller et al. 2013). In order to describe +the effects of unresolved GWs in global forecast models, the representation of +subgrid OGWs and NGWs has been implemented in the self-consistent manner using the +UGWP framework. + +The concept of UGWP was first proposed and implemented in the Unified +Forecast System (UFS)with model top at different levels by scientists from +the University of Colorado Cooperative Institute for Research in the +Environmental Sciences (CIRES) at NOAA's Space Weather Prediction Center (SWPC) +and from NOAA's Environmental Modeling Center (EMC) (Alpert et al. +2019 \cite alpert_et_al_2019; Yudin et al. 2016 \cite yudin_et_al_2016; +Yudin et al. 2018 \cite yudin_et_al_2018). The UGWP considers identical +GW propagation solvers for OGWs and NGWs with different approaches for +specification of subgrid wave sources. The current set of the input and +control paramters for UGWP version 0 (UGWP v0) enables options for GW +effects, including momentum deposition (also called GW drag), heat +deposition, and mixing by eddy viscosity, conductivity and diffusion; +however, note that the eddy mixing effects induced by instability of GWs +are not activated in this version. + +Namelist paramters control the number of directional azimuths in which +waves can propagate, number of waves in a single direction, and the level +above the surface at which NGWs can be launched. Among the input parameters, +the GW efficiency factors reflect intermittency of wave excitation. +They should vary with horizontal resolution, reflecting the capability of +the dynamical core to resolve mesoscale wave activity with the enhancement +of model resolution. + +Prescribed distributions for vertical momentum flux (VMF) of NGWs have been employed +in global numerical weather prediction and reanalysis models to ease tuning of GW +schemes to the climatology of the middle atmosphere dynamics in the absence of +the global wind data above about 35 km (Eckermann et al. 2009 \cite eckermann_et_al_2009; +Molod et al. 2015 \cite molod_et_al_2015). These distributions of VMF +qualitatively describe the general features of the latitudinal and seasonal + variations of the global GW activity in the lower stratosphere, observed from the +ground and space (Ern et al. 2018 \cite ern_et_al_2018). Subgrid GW sources can also be +parameterized to respond to year-to-year variations of solar input and +anthropogenic emissions (Richter et al 2010 \cite richter_et_al_2010; +2014 \cite richter_et_al_2014). + +Note that in UGWP v0, the momentum and heat deposition due to GW breaking +and dissipation have been tested in the multi-year simulations and +medium-range forecasts using a configuration of the UFS weather model +using 127 levels with model top at approximately 80 km. + +Along with the GW heat and momentum depositions, GW eddy mixing is an +important element of the Whole Atmosphere Model (WAM) physics, as shown +in WAM simulations with the spectral dynamics (Yudin et al. 2018 \cite yudin_et_al_2018). +The impact of eddy mixing effects in the middle and upper atmosphere, +which is not included in this version, need to be tested, evaluated, and +orchestrated with the representation of the subgrid turbulent diffusion and +the numerical dissipation. + +The representation of subgrid GWs is particularly important for WAMs that +extend into the thermosphere (top lid at ~600 km). In the mesosphere and +thermosphere, the background attenuation of subgrid waves due to molecular +and turbulent diffusion, radiative damping and ion drag will be the +additional mechanism of NGW and OGW dissipation along with convective +and dynamical instability of waves described by the linear +(Lindzen 1981 \cite lindzen_1981) and nonlinear +(Weinstock 1984 \cite weinstock_1984; Hines 1997 \cite hines_1997) saturation theories. + +\section intra_UGWPv0 Intraphysics Communication +\ref arg_table_cires_ugwp_run + +\section gen_al_ugwpv0 General Algorithm +\ref gen_cires_ugwp + +*/ diff --git a/physics/docs/pdftxt/GFSv15p2_suite.txt b/physics/docs/pdftxt/GFSv15p2_suite.txt new file mode 100644 index 000000000..7d9f9d348 --- /dev/null +++ b/physics/docs/pdftxt/GFSv15p2_suite.txt @@ -0,0 +1,133 @@ +/** +\page GFS_v15p2_page GFS_v15p2 Suite + +\section gfs1_suite_overview Overview + +Suite GFS_v15p2 has the parameterizations used in the GFS v15 implemented operationally +in June 2019. + +The GFS_v15p2 physics suite uses the parameterizations in the following order: + - \ref GFS_RRTMG + - \ref GFS_SFCLYR + - \ref GFS_NSST + - \ref GFS_NOAH + - \ref GFS_SFCSICE + - \ref GFS_HEDMF + - \ref GFS_UGWP_v0 + - \ref GFS_RAYLEIGH + - \ref GFS_OZPHYS + - \ref GFS_H2OPHYS + - \ref GFS_SAMFdeep + - \ref GFS_SAMFshal + - \ref GFDL_cloud + - \ref GFS_CALPRECIPTYPE + +\section sdf_gfsv15p2 Suite Definition File +- For NEMSIO initialization data: \ref suite_FV3_GFS_v15p2_xml +- For GRIB2 initialization data: \ref suite_FV3_GFS_v15p2_no_nsst_xml + +\section gfs15p2_nml_opt_des Namelist + +- \b &gfs_physics_nml +\n \c fhzero = 6 +\n \c h2o_phys = .true. +\n \c ldiag3d = .false. +\n \c fhcyc = 24 +\n \c use_ufo = .true. +\n \c pre_rad = .false. +\n \c ncld = 5 +\n \c imp_physics = 11 +\n \c pdfcld = .false. +\n \c fhswr = 3600. +\n \c fhlwr = 3600. +\n \c ialb = 1 +\n \c iems = 1 +\n \c iaer = 111 +\n \c ico2 = 2 +\n \c isubc_sw = 2 +\n \c isubc_lw = 2 +\n \c isol = 2 +\n \c lwhtr = .true. +\n \c swhtr = .true. +\n \c cnvgwd = .true. +\n \c shal_cnv = .true. +\n \c cal_pre = .false. +\n \c redrag = .true. +\n \c dspheat = .true. +\n \c hybedmf = .true. +\n \c random_clds = .false. +\n \c trans_trac = .true. +\n \c cnvcld = .true. +\n \c imfshalcnv = 2 +\n \c imfdeepcnv = 2 +\n \c cdmbgwd = 3.5,0.25 [1.0,1.2] [0.2,2.5] [0.125,3.0] ! [C768] [C384] [C192] [C96]L64 +\n \c prslrd0 = 0. +\n \c ivegsrc = 1 +\n \c isot = 1 +\n \c debug = .false. +\n \c oz_phys = .F. +\n \c oz_phys_2015 = .T. +\n \c nstf_name = @[NSTF_NAME] +\n \c nst_anl = .true. +\n \c psautco = 0.0008,0.0005 +\n \c prautco = 0.00015,0.00015 +\n \c lgfdlmprad = .true. +\n \c effr_in = .true. +\n \c do_sppt = .false. +\n \c do_shum = .false. +\n \c do_skeb = .false. +\n \c do_sfcperts = .false. + +- \b &gfdl_cloud_microphysics_nml +\n \c sedi_transport = .true. +\n \c do_sedi_heat = .false. +\n \c rad_snow = .true. +\n \c rad_graupel = .true. +\n \c rad_rain = .true. +\n \c const_vi = .F. +\n \c const_vs = .F. +\n \c const_vg = .F. +\n \c const_vr = .F. +\n \c vi_max = 1. +\n \c vs_max = 2. +\n \c vg_max = 12. +\n \c vr_max = 12. +\n \c qi_lim = 1. +\n \c prog_ccn = .false. +\n \c do_qa = .true. +\n \c fast_sat_adj = .true. +\n \c tau_l2v = 225. +\n \c tau_v2l = 150. +\n \c tau_g2v = 900. +\n \c rthresh = 10.e-6 +\n \c dw_land = 0.16 +\n \c dw_ocean = 0.10 +\n \c ql_gen = 1.0e-3 +\n \c ql_mlt = 1.0e-3 +\n \c qi0_crt = 8.0E-5 +\n \c qs0_crt = 1.0e-3 +\n \c tau_i2s = 1000. +\n \c c_psaci = 0.05 +\n \c c_pgacs = 0.01 +\n \c rh_inc = 0.30 +\n \c rh_inr = 0.30 +\n \c rh_ins = 0.30 +\n \c ccn_l = 300. +\n \c ccn_o = 100. +\n \c c_paut = 0.5 +\n \c c_cracw = 0.8 +\n \c use_ppm = .false. +\n \c use_ccn = .true. +\n \c mono_prof = .true. +\n \c z_slope_liq = .true. +\n \c z_slope_ice = .true. +\n \c de_ice = .false. +\n \c fix_negative = .true. +\n \c icloud_f = 1 +\n \c mp_time = 150. + +\note nstf_name = \f$2,0,0,0,0[2,1,0,0,0]^1 [0,0,0,0,0]^2\f$ +- \f$^1\f$ This should be used when spinning up NSST fields in the absence of NSST data in initial conditions (see documentation for CHGRES) +- \f$^2\f$ This should be used when not using NSST at all (paired with \ref suite_FV3_GFS_v15p2_no_nsst_xml to turned off NSST option) + +*/ diff --git a/physics/docs/pdftxt/GFSv16beta_suite.txt b/physics/docs/pdftxt/GFSv16beta_suite.txt new file mode 100644 index 000000000..abba846f1 --- /dev/null +++ b/physics/docs/pdftxt/GFSv16beta_suite.txt @@ -0,0 +1,176 @@ +/** +\page GFS_v16beta_page GFS_v16beta Suite + +\section gfsv16beta_suite_overview Overview + +Version 16 of the Global Forecast System (GFS) will be implemented operationally by the NOAA +National Centers for Environmental Prediction (NCEP) in 2021. GFS_v16beta is a prototype of +the GFS_v16 suite. The main difference between the GFS_v15p2 and GFS_v16beta suites is the +replacement of the K-based EDMF PBL scheme with a moist TKE based one. + + +The GFS_v16beta physics suite uses the parameterizations in the following order: + - \ref GFS_RRTMG + - \ref GFS_SFCLYR + - \ref GFS_NSST + - \ref GFS_NOAH + - \ref GFS_SFCSICE + - \ref GFS_SATMEDMFVDIFQ + - \ref GFS_UGWP_v0 + - \ref GFS_RAYLEIGH + - \ref GFS_OZPHYS + - \ref GFS_H2OPHYS + - \ref GFS_SAMFdeep + - \ref GFS_SAMFshal + - \ref GFDL_cloud + - \ref GFS_CALPRECIPTYPE + +\section sdf_gfsv16b Suite Definition File +- For NEMSIO initialization data: \ref suite_FV3_GFS_v16beta_xml +- For GRIB2 initialization data: \ref suite_FV3_GFS_v16beta_no_nsst_xml + +\section gfs16beta_nml_opt_des Namelist + +- \b &gfs_physics_nml +\n \c fhzero = 6 +\n \c h2o_phys = .true. +\n \c ldiag3d = .false. +\n \c fhcyc = 24 +\n \c use_ufo = .true. +\n \c pre_rad = .false. +\n \c ncld = 5 +\n \c imp_physics = 11 +\n \c pdfcld = .false. +\n \c fhswr = 3600. +\n \c fhlwr = 3600. +\n \c ialb = 1 +\n \c iems = 1 +\n \c iaer = 5111 +\n \c icliq_sw = 2 +\n \c iovr_lw = 3 +\n \c iovr_sw = 3 +\n \c ico2 = 2 +\n \c isubc_sw = 2 +\n \c isubc_lw = 2 +\n \c isol = 2 +\n \c lwhtr = .true. +\n \c swhtr = .true. +\n \c cnvgwd = .true. +\n \c shal_cnv = .true. +\n \c cal_pre = .false. +\n \c redrag = .true. +\n \c dspheat = .true. +\n \c hybedmf = .false. +\n \c satmedmf = .true. +\n \c isatmedmf = 1 +\n \c lheatstrg = .true. +\n \c random_clds = .false. +\n \c trans_trac = .true. +\n \c cnvcld = .true. +\n \c imfshalcnv = 2 +\n \c imfdeepcnv = 2 +\n \c cdmbgwd = 4.0,0.15,1.0,1.0 [1.1,0.72,1.0,1.0] [0.23,1.5,1.0,1.0] [0.14,1.8,1.0,1.0] ! [C768] [C384] [C192] [C96]L64 +\n \c prslrd0 = 0. +\n \c ivegsrc = 1 +\n \c isot = 1 +\n \c lsoil = 4 +\n \c lsm = 1 +\n \c iopt_dveg = 1 +\n \c iopt_crs = 1 +\n \c iopt_btr = 1 +\n \c iopt_run = 1 +\n \c iopt_sfc = 1 +\n \c iopt_frz = 1 +\n \c iopt_inf = 1 +\n \c iopt_rad = 1 +\n \c iopt_alb = 2 +\n \c iopt_snf = 4 +\n \c iopt_tbot = 2 +\n \c iopt_stc = 1 +\n \c debug = .false. +\n \c oz_phys = .F. +\n \c oz_phys_2015 = .T. +\n \c nstf_name = @[NSTF_NAME] +\n \c nst_anl = .true. +\n \c psautco = 0.0008,0.0005 +\n \c prautco = 0.00015,0.00015 +\n \c lgfdlmprad = .true. +\n \c effr_in = .true. +\n \c ldiag_ugwp = .false. +\n \c do_ugwp = .false. +\n \c do_tofd = .true. +\n \c do_sppt = .false. +\n \c do_shum = .false. +\n \c do_skeb = .false. +\n \c do_sfcperts = .false. + + +- \b &gfdl_cloud_microphysics_nml +\n \c sedi_transport = .true. +\n \c do_sedi_heat = .false. +\n \c rad_snow = .true. +\n \c rad_graupel = .true. +\n \c rad_rain = .true. +\n \c const_vi = .F. +\n \c const_vs = .F. +\n \c const_vg = .F. +\n \c const_vr = .F. +\n \c vi_max = 1. +\n \c vs_max = 2. +\n \c vg_max = 12. +\n \c vr_max = 12. +\n \c qi_lim = 1. +\n \c prog_ccn = .false. +\n \c do_qa = .true. +\n \c fast_sat_adj = .true. +\n \c tau_l2v = 225. +\n \c tau_v2l = 150. +\n \c tau_g2v = 900. +\n \c rthresh = 10.e-6 +\n \c dw_land = 0.16 +\n \c dw_ocean = 0.10 +\n \c ql_gen = 1.0e-3 +\n \c ql_mlt = 1.0e-3 +\n \c qi0_crt = 8.0E-5 +\n \c qs0_crt = 1.0e-3 +\n \c tau_i2s = 1000. +\n \c c_psaci = 0.05 +\n \c c_pgacs = 0.01 +\n \c rh_inc = 0.30 +\n \c rh_inr = 0.30 +\n \c rh_ins = 0.30 +\n \c ccn_l = 300. +\n \c ccn_o = 100. +\n \c c_paut = 0.5 +\n \c c_cracw = 0.8 +\n \c use_ppm = .false. +\n \c use_ccn = .true. +\n \c mono_prof = .true. +\n \c z_slope_liq = .true. +\n \c z_slope_ice = .true. +\n \c de_ice = .false. +\n \c fix_negative = .true. +\n \c icloud_f = 1 +\n \c mp_time = 150. +\n \c reiflag = 2 + + +- \b &cires_ugwp_nml +\n \c knob_ugwp_solver = 2 +\n \c knob_ugwp_source = 1,1,0,0 +\n \c knob_ugwp_wvspec = 1,25,25,25 +\n \c knob_ugwp_azdir = 2,4,4,4 +\n \c knob_ugwp_stoch = 0,0,0,0 +\n \c knob_ugwp_effac = 1,1,1,1 +\n \c knob_ugwp_doaxyz = 1 +\n \c knob_ugwp_doheat = 1 +\n \c knob_ugwp_dokdis = 1 +\n \c knob_ugwp_ndx4lh = 1 +\n \c knob_ugwp_version = 0 +\n \c launch_level = 27 + +\note nstf_name = \f$2,0,0,0,0[2,1,0,0,0]^1 [0,0,0,0,0]^2\f$ +- \f$^1\f$ This should be used when spinning up NSST fields in the absence of NSST data in initial conditions (see documentation for CHGRES) +- \f$^2\f$ This should be used when not using NSST at all (paired with \ref suite_FV3_GFS_v16beta_no_nsst_xml to turned off NSST option) + +*/ diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt new file mode 100644 index 000000000..f12b0c366 --- /dev/null +++ b/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt @@ -0,0 +1,101 @@ +/** +\page suite_FV3_GFS_v15p2_xml suite_FV3_GFS_v15p2.xml + +\code + + + + + + + fv_sat_adj + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + sfc_diff + GFS_surface_loop_control_part1 + sfc_nst_pre + sfc_nst + sfc_nst_post + lsm_noah + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + dcyc2t3_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + GFS_PBL_generic_pre + hedmf + GFS_PBL_generic_post + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + GFS_DCNV_generic_pre + get_phi_fv3 + GFS_suite_interstitial_3 + samfdeepcnv + GFS_DCNV_generic_post + GFS_SCNV_generic_pre + samfshalcnv + GFS_SCNV_generic_post + GFS_suite_interstitial_4 + cnvc90 + GFS_MP_generic_pre + gfdl_cloud_microphys + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + + + + +\endcode + +*/ diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt new file mode 100644 index 000000000..cd29eecdb --- /dev/null +++ b/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt @@ -0,0 +1,100 @@ +/** +\page suite_FV3_GFS_v15p2_no_nsst_xml suite_FV3_GFS_v15p2_no_nsst.xml + +\code + + + + + + + fv_sat_adj + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + sfc_diff + GFS_surface_loop_control_part1 + sfc_ocean + lsm_noah + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + dcyc2t3_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + GFS_PBL_generic_pre + hedmf + GFS_PBL_generic_post + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + get_phi_fv3 + GFS_suite_interstitial_3 + GFS_DCNV_generic_pre + samfdeepcnv + GFS_DCNV_generic_post + GFS_SCNV_generic_pre + samfshalcnv + GFS_SCNV_generic_post + GFS_suite_interstitial_4 + cnvc90 + GFS_MP_generic_pre + gfdl_cloud_microphys + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + + + + +\endcode + +*/ + diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt new file mode 100644 index 000000000..722224988 --- /dev/null +++ b/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt @@ -0,0 +1,101 @@ +/** +\page suite_FV3_GFS_v16beta_xml suite_FV3_GFS_v16beta.xml + +\code + + + + + + + fv_sat_adj + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + sfc_diff + GFS_surface_loop_control_part1 + sfc_nst_pre + sfc_nst + sfc_nst_post + lsm_noah + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + dcyc2t3_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + GFS_PBL_generic_pre + satmedmfvdifq + GFS_PBL_generic_post + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + GFS_DCNV_generic_pre + get_phi_fv3 + GFS_suite_interstitial_3 + samfdeepcnv + GFS_DCNV_generic_post + GFS_SCNV_generic_pre + samfshalcnv + GFS_SCNV_generic_post + GFS_suite_interstitial_4 + cnvc90 + GFS_MP_generic_pre + gfdl_cloud_microphys + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + + + + +\endcode + +*/ diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt new file mode 100644 index 000000000..adeb4352a --- /dev/null +++ b/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt @@ -0,0 +1,98 @@ +/** +\page suite_FV3_GFS_v16beta_no_nsst_xml suite_FV3_GFS_v16beta_no_nsst.xml + +\code + + + + + + + fv_sat_adj + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + sfc_diff + GFS_surface_loop_control_part1 + sfc_ocean + lsm_noah + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + dcyc2t3_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + GFS_PBL_generic_pre + satmedmfvdifq + GFS_PBL_generic_post + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + get_phi_fv3 + GFS_suite_interstitial_3 + GFS_DCNV_generic_pre + samfdeepcnv + GFS_DCNV_generic_post + GFS_SCNV_generic_pre + samfshalcnv + GFS_SCNV_generic_post + GFS_suite_interstitial_4 + cnvc90 + GFS_MP_generic_pre + gfdl_cloud_microphys + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + + + + +\endcode +*/ diff --git a/physics/docs/pdftxt/suite_input.nml.txt b/physics/docs/pdftxt/suite_input.nml.txt index fcb55d84f..688eb5d07 100644 --- a/physics/docs/pdftxt/suite_input.nml.txt +++ b/physics/docs/pdftxt/suite_input.nml.txt @@ -389,42 +389,61 @@ and how stochastic perturbations are used in the Noah Land Surface Model. skebint compns_stochy_mod 0 \b &gfdl_cloud_microphysics_nml sedi_transport gfdl_cloud_microphys_mod logical flag for turning on horizontal momentum transport during sedimentation .true. +do_sedi_w gfdl_cloud_microphys_mod \a .true. to turn on vertical motion transport during sedimentation. (not supported in GFS physics) .false. do_sedi_heat gfdl_cloud_microphys_mod logical flag for turning on horizontal heat transport during sedimentation .true. rad_snow gfdl_cloud_microphys_mod logical flag for considering snow in cloud fraction calculation .true. rad_graupel gfdl_cloud_microphys_mod logical flag for considering graupel in cloud fraction calculation .true. rad_rain gfdl_cloud_microphys_mod logical flag for considering rain in cloud fraction calculation .true. +cld_min gfdl_cloud_microphys_mod minimum cloud fraction. If total cloud condensate exceeds 1.0e-6 kg/kg, cloud fraction cannot be less than \p cld_min 0.05 const_vi gfdl_cloud_microphys_mod logical flag for using constant cloud ice fall speed .false. const_vs gfdl_cloud_microphys_mod logical flag for using constant snow fall speed .false. const_vg gfdl_cloud_microphys_mod logical flag for using constant graupel fall speed .false. const_vr gfdl_cloud_microphys_mod logical flag for using constant rain fall speed .false. +vi_fac gfdl_cloud_microphys_mod tunable factor for cloud ice fall or the constant cloud ice fall speed when \p const_vi is .true. 1. +vr_fac gfdl_cloud_microphys_mod tunable factor for rain fall or the constant rain fall speed when \p const_vr is .true. 1. +vs_fac gfdl_cloud_microphys_mod tunable factor for snow fall or the constant snow fall speed when \p const_vs is .true. 1. +vg_fac gfdl_cloud_microphys_mod tunable factor for graupel fall or the constant graupel fall speed when \p const_vg is .true. 1. vi_max gfdl_cloud_microphys_mod maximum fall speed for cloud ice 0.5 vs_max gfdl_cloud_microphys_mod maximum fall speed for snow 5.0 vg_max gfdl_cloud_microphys_mod maximum fall speed for graupel 8.0 vr_max gfdl_cloud_microphys_mod maximum fall speed for rain 12.0 qi_lim gfdl_cloud_microphys_mod cloud ice limiter to prevent large ice built up in cloud ice freezing and deposition 1. prog_ccn gfdl_cloud_microphys_mod logical flag for activating prognostic CCN (not supported in GFS Physics) .false. -do_qa gfdl_cloud_microphys_mod logical flag for activating inline cloud fraction diagnosis in fast saturation adjustment .true. -fast_sat_adj gfdl_cloud_microphys_mod logical flag for adjusting cloud water evaporation/freezing, cloud ice deposition when fast saturation adjustment is activated .true. +do_qa gfdl_cloud_microphys_mod \a .true. to activate inline cloud fraction diagnosis in fast saturation adjustment. \a .false. to activate inline cloud fraction diagnosis in major cloud microphysics .true. +fast_sat_adj gfdl_cloud_microphys_mod logical flag for adjusting cloud water evaporation (cloud water -> water vapor), cloud water freezing (cloud water -> cloud ice), cloud ice deposition (water vapor -> cloud ice) when fast saturation adjustment is activated (\b do_sat_adj = .true. in \b fv_core_nml block) .true. tau_l2v gfdl_cloud_microphys_mod time scale for evaporation of cloud water to water vapor. Increasing(decreasing) \p tau_l2v can decrease(boost) deposition of cloud water to water vapor 300. tau_v2l gfdl_cloud_microphys_mod time scale for condensation of water vapor to cloud water. Increasing(decreasing) \p tau_v2l can decrease(boost) condensation of water vapor to cloud water 150. tau_g2v gfdl_cloud_microphys_mod time scale for sublimation of graupel to water vapor. Increasing(decreasing) \p tau_g2v can decrease(boost) sublimation of graupel to water vapor 900. +tau_g2r gfdl_cloud_microphys_mod time scale for graupel melting. Increasing(decreasing) \p tau_g2r can decrease(boost) melting of graupel to rain (graupel-> rain) 600. +tau_v2g gfdl_cloud_microphys_mod time scale for deposition of water vapor to graupel. Increasing(decreasing) \p tau_v2g can decrease(boost) deposition of water vapor to graupel (water vapor -> graupel) 21600. +tau_l2r gfdl_cloud_microphys_mod time scale for autoconversion of cloud water to rain. Increasing(decreasing) \p tau_l2r can decrese(boost) autoconversion of cloud water to rain (cloud water -> rain) 900. +tau_r2g gfdl_cloud_microphys_mod time scale for freezing of rain to graupel. Increasing(decreasing) \p tau_r2g can decrease(boost) freezing of rain to graupel (rain->graupel) 900. +tau_i2s gfdl_cloud_microphys_mod time scale for autoconversion of cloud ice to snow. Increasing(decreasing) \p tau_i2s can decrease(boost) autoconversion of cloud ice to snow (cloud ice -> snow) 1000. +tau_imlt gfdl_cloud_microphys_mod time scale for cloud ice melting. Increasing(decreasing) \p tau_imlt can decrease(boost) melting of cloud ice to cloud water or rain (cloud ice -> cloud water or rain) 600. +tau_smlt gfdl_cloud_microphys_mod time scale for snow melting. Increasing(decreasing) \p tau_smlt can decrease(boost) melting of snow to cloud water or rain (snow-> cloud water or rain) 900. rthresh gfdl_cloud_microphys_mod critical cloud water radius for autoconversion (cloud water -> rain). Increasing(decreasing) of \p rthresh makes the autoconversion harder(easier) 10.0e-6 dw_land gfdl_cloud_microphys_mod base value for subgrid deviation/variability over land 0.20 dw_ocean gfdl_cloud_microphys_mod base value for subgrid deviation/variability over ocean 0.10 ql_gen gfdl_cloud_microphys_mod maximum value for cloud water generated from condensation of water vapor (water vapor-> cloud water) 1.0e-3 -ql_mlt gfdl_cloud_microphys_mod maximum value of cloud water allowed from melted cloud ice (cloud ice -> cloud water or rain) 2.0e-3 -qi0_crt gfdl_cloud_microphys_mod threshold of cloud ice to snow autoconversion (cloud ice -> snow) 1.0e-4 -qs0_crt gfdl_cloud_microphys_mod threshold of snow to graupel autoconversion (snow -> graupel) 1.0e-3 -tau_i2s gfdl_cloud_microphys_mod time scale for autoconversion of cloud ice to snow 1000. -c_psaci gfdl_cloud_microphys_mod accretion efficiency of cloud ice to snow 0.02 -c_pgacs gfdl_cloud_microphys_mod accretion efficiency of snow to graupel 2.0e-3 +qi_gen gfdl_cloud_microphys_mod maximum value of cloud ice generated from deposition of water vapor (water vapor->cloud ice) or freezing(cloud water -> cloud ice). Increasing(decreasing) \p qi_gen can increas(decrease) cloud ice 1.82e-6 +ql_mlt gfdl_cloud_microphys_mod maximum value of cloud water allowed from melted cloud ice (cloud ice -> cloud water or rain). Exceedance of which will become rain. Increasing(decreasing) \p ql_mlt can increase(decrease) cloud water and decrease(increase) rain 2.0e-3 +qs_mlt gfdl_cloud_microphys_mod maximum value of cloud water allowed from melted snow (snow -> cloud water or rain). Exceedance of which will become rain. Increasing(decreasing) \p qs_mlt can increas(decrease) cloud water and decrease (increase) rain 1.0e-6 +ql0_max gfdl_cloud_microphys_mod threshold of cloud water to rain autoconversion (cloud water -> rain). Increasing(decreasing) \p ql0_max can increase(decrease) rain and decrease(increase) cloud water 2.0e-3 +qi0_max gfdl_cloud_microphys_mod maximum value of cloud ice generated from other sources like convection. Exceedance of which will become snow. Increasing(decreasing) \p qi0_max can increase(decrease) cloud ice and decrease(increase) snow 1.0e-4 +qi0_crt gfdl_cloud_microphys_mod threshold of cloud ice to snow autoconversion (cloud ice -> snow). Increasing(decreasing) \p qi0_crt can increase(decrease) cloud ice and decrease(increase) snow 1.0e-4 +qs0_crt gfdl_cloud_microphys_mod threshold of snow to graupel autoconversion (snow -> graupel). Increasing(decreasing) \p qs0_crt can increase(decrease) snow and decrease(increase) graupel 1.0e-3 +qc_crt gfdl_cloud_microphys_mod minimum value of cloud condensate to allow partial cloudiness. Partial cloud can only exist when total cloud condensate exceeds \p qc_crt 5.0e-8 +c_psaci gfdl_cloud_microphys_mod accretion efficiency of cloud ice to snow (cloud ice -> snow). Increasing(decreasing) of \p c_psaci can boost(decrease) the accretion of cloud ice to snow 0.02 +c_pgacs gfdl_cloud_microphys_mod accretion efficiency of snow to graupel (snow -> graupel). Increasing(decreasing) of \p c_pgacs can boost(decrease) the accretion of snow to graupel 2.0e-3 rh_inc gfdl_cloud_microphys_mod relative humidity increment for complete evaporation of cloud water and cloud ice 0.25 rh_inr gfdl_cloud_microphys_mod relative humidity increment for sublimation of snow 0.25 rh_ins gfdl_cloud_microphys_mod relative humidity increment for minimum evaporation of rain 0.25 -ccn_l gfdl_cloud_microphys_mod base CCN over land \f$cm^{-3}\f$ 270. -ccn_o gfdl_cloud_microphys_mod base CCN over ocean \f$cm^{-3}\f$ 90. -c_paut gfdl_cloud_microphys_mod autoconversion efficiency of cloud water to rain 0.55 -c_cracw gfdl_cloud_microphys_mod accretion efficiency of cloud water to rain 0.9 +rthresh gfdl_cloud_microphys_mod critical cloud water radius for autoconversion(cloud water->rain). Increasing(decreasing) of \p rthresh makes the autoconversion harder(easier) 1.0e-5 +ccn_l gfdl_cloud_microphys_mod base CCN over land. Increasing(decreasing) \p ccn_l can on the one hand boost(decrease) the autoconversion of cloud water to rain, on the other hand make the autoconversion harder(easier). The unit is \f$cm^{-3}\f$ 270. +ccn_o gfdl_cloud_microphys_mod base CCN over ocean. Increasing(decreasing) \p ccn_o can on the one hand boost(decrease) the autoconversion of cloud water to rain, on the other hand make the autoconversion harder(easier). The unit is \f$cm^{-3}\f$ 90. +c_paut gfdl_cloud_microphys_mod autoconversion efficiency of cloud water to rain (cloud water -> rain). Increasing(decreasing) of \p c_paut can boost(decrease) the autoconversion of cloud water to rain 0.55 +c_cracw gfdl_cloud_microphys_mod accretion efficiency of cloud water to rain (cloud water -> rain). Increasing(decreasing) of \p c_cracw can boost(decrease) the accretion of cloud water to rain 0.9 +sat_adj0 gfdl_cloud_microphys_mod adjust factor for condensation of water vapor to cloud water (water vapor->cloud water) and deposition of water vapor to cloud ice 0.9 use_ppm gfdl_cloud_microphys_mod \e true to use PPM fall scheme; \e false to use time-implicit monotonic fall scheme .false. use_ccn gfdl_cloud_microphys_mod \e true to compute prescribed CCN. It should be .true. when \p prog_ccn = .false. .false. mono_prof gfdl_cloud_microphys_mod \e true to turn on terminal fall with monotonic PPM scheme. This is used together with \p use_ppm=.true. .true. @@ -433,6 +452,68 @@ and how stochastic perturbations are used in the Noah Land Surface Model. de_ice gfdl_cloud_microphys_mod \e true to convert excessive cloud ice to snow to prevent ice over-built from other sources like convection scheme (not supported in GFS physics) .false. fix_negative gfdl_cloud_microphys_mod \e true to fix negative water species using nearby points .false. icloud_f gfdl_cloud_microphys_mod flag (0,1,or 2) for cloud fraction diagnostic scheme 0 -mp_time gfdl_cloud_microphys_mod time step of GFDL cloud microphysics 150. +irain_f gfdl_cloud_microphys_mod flag (0 or 1) for cloud water autoconversion to rain scheme. 0: with subgrid variability; 1: no subgrid variability 0 +mp_time gfdl_cloud_microphys_mod time step of GFDL cloud microphysics (MP). If \p mp_time isn't divisible by physics time step or is larger than physics time step, the actual MP time step becomes \p dt/NINT[dt/MIN(dt,mp_time)] 150. +alin gfdl_cloud_microphys_mod parameter \a a in Lin et al.(1983). Constant in empirical formula for \f$U_R\f$. Increasing(decreasing) \p alin can boost(decrease) accretion of cloud water by rain and rain evaporation 842. +clin gfdl_cloud_microphys_mod parameter \a c in Lin et al.(1983). Constant in empirical formula for \f$U_S\f$. Increasing(decreasing) \p clin can boost(decrease) accretion of cloud water by snow, accretion of cloud ice by snow, snow sublimation and deposition, and snow melting 4.8 +t_min gfdl_cloud_microphys_mod temperature threshold for instant deposition. Deposit all water vapor to cloud ice when temperature is lower than \p t_min 178. +t_sub gfdl_cloud_microphys_mod temperature threshold for sublimation. Cloud ice, snow or graupel stops(starts) sublimation when temperature is lower(higher) then \p t_sub 184. +mp_print gfdl_cloud_microphys_mod \a .true. to turn on GFDL cloud microphysics debugging print out. (not supported in GFS physics) .false. +\b &cires_ugwp_nml +knob_ugwp_version cires_ugwp_module parameter selects a version of the UGWP implementation in FV3GFS-127L \n + + 0 +knob_ugwp_doaxyz cires_ugwp_module parameter controls application of the momentum deposition for NGW-schemes \n + + 1 +knob_ugwp_doheat cires_ugwp_module parameter controls application of the heat deposition for NGW-schemes \n + + 1 +knob_ugwp_dokdis cires_ugwp_module parameter controls application of the eddy diffusion due to instability of NGWs \n + + 0 +knob_ugwp_solver cires_ugwp_module parameter controls the selection of UGWP-solvers(wave propagation, dissipation and wave breaking) for NGWs \n + + 1 +knob_ugwp_ndx4lh cires_ugwp_module parameter controls the selection of the horizontal wavenumber(wavelength) for NGW schemes \n + + 2 +knob_ugwp_wvspec cires_ugwp_module four-dimensional array defines number of waves in each arimuthal propagation (as defined by knob_ugwp_azdir) for GWs excited due to the following four sources: \n + (1) sub-grid orography (\b knob_ugwp_wvspec[1]=1), \n + (2) convective (\b knob_ugwp_wvspec[2]=25), \n + (3) frontal (\b knob_ugwp_wvspec[3]=25) activity, \n + (4) \b knob_ugwp_wvspec[4] represents number of wave excited by dynamical imbalances that may mimic both convective and front-jet mechanisms of GW triggering. \n + In UGWP v0, first two elements of the array, \b knob_ugwp_wvspec(1:2), control number of waves for stationary (OGW) and nonstationary waves (NGWs). + 1,32,32,32 +knob_ugwp_azdir cires_ugwp_module four-dimensional array that defines number of azimuths for propagation of GWs triggered by four types of physics-based sources (orography, convection, front-jets, and dynamical imbalance). In UGWP v0, first two elements of the array, \b knob_ugwp_azdir(1:2), control number of azimuths for OGW and NGWs respectively. + 2,4,4,4 +knob_ugwp_stoch cires_ugwp_module four-dimensional array that control stochastic selection of GWs triggered by four types of physics-based sources. \n + Default values:0,0,0,0 - reflect determinstic selection of GW parameters without stochastic selection + 0,0,0,0 +knob_ugwp_effac cires_ugwp_module four-dimensional array that control efficiency of GWs triggerd by four types of physics-based sources. \n + Default values: 1.,1.,1.,1. - reflect that calculated GW-tendencies will be applied for the model state. + 1.,1.,1.,1. +launch_level cires_ugwp_module parameter has been introduced by EMC during implementation. It defines the interface model level from the surface at which NGWs are launched. \n + Default value for FV3GFS-64L, launch_level=25 and for FV3GFS-128L, launch_level=52. + 55 */ diff --git a/physics/docs/ufs_doxyfile b/physics/docs/ufs_doxyfile new file mode 100644 index 000000000..1b77aafb6 --- /dev/null +++ b/physics/docs/ufs_doxyfile @@ -0,0 +1,464 @@ +# Doxyfile 1.8.11 +DOXYFILE_ENCODING = UTF-8 +PROJECT_NAME = "CCPP Scientific Documentation" +PROJECT_NUMBER = "" +PROJECT_BRIEF = "v4.0" +PROJECT_LOGO = img/dtc_logo.png +OUTPUT_DIRECTORY = doc +CREATE_SUBDIRS = NO +ALLOW_UNICODE_NAMES = NO +OUTPUT_LANGUAGE = English +BRIEF_MEMBER_DESC = YES +REPEAT_BRIEF = NO +ABBREVIATE_BRIEF = +ALWAYS_DETAILED_SEC = NO +INLINE_INHERITED_MEMB = NO +FULL_PATH_NAMES = NO +STRIP_FROM_PATH = +STRIP_FROM_INC_PATH = +SHORT_NAMES = NO +JAVADOC_AUTOBRIEF = NO +QT_AUTOBRIEF = NO +MULTILINE_CPP_IS_BRIEF = NO +INHERIT_DOCS = YES +SEPARATE_MEMBER_PAGES = YES +TAB_SIZE = 4 +ALIASES = +TCL_SUBST = +OPTIMIZE_OUTPUT_FOR_C = NO +OPTIMIZE_OUTPUT_JAVA = NO +OPTIMIZE_FOR_FORTRAN = YES +OPTIMIZE_OUTPUT_VHDL = NO +EXTENSION_MAPPING = .f=FortranFree \ + .F=FortranFree \ + .F90=FortranFree \ + .f90=FortranFree +MARKDOWN_SUPPORT = YES +AUTOLINK_SUPPORT = YES +BUILTIN_STL_SUPPORT = NO +CPP_CLI_SUPPORT = NO +SIP_SUPPORT = NO +IDL_PROPERTY_SUPPORT = YES +DISTRIBUTE_GROUP_DOC = YES +GROUP_NESTED_COMPOUNDS = NO +SUBGROUPING = YES +INLINE_GROUPED_CLASSES = NO +INLINE_SIMPLE_STRUCTS = NO +TYPEDEF_HIDES_STRUCT = YES +LOOKUP_CACHE_SIZE = 0 +EXTRACT_ALL = YES +EXTRACT_PRIVATE = YES +EXTRACT_PACKAGE = YES +EXTRACT_STATIC = YES +EXTRACT_LOCAL_CLASSES = YES +EXTRACT_LOCAL_METHODS = YES +EXTRACT_ANON_NSPACES = YES +HIDE_UNDOC_MEMBERS = NO +HIDE_UNDOC_CLASSES = NO +HIDE_FRIEND_COMPOUNDS = NO +HIDE_IN_BODY_DOCS = NO +INTERNAL_DOCS = YES + +CASE_SENSE_NAMES = NO + +HIDE_SCOPE_NAMES = NO + +HIDE_COMPOUND_REFERENCE= NO + +SHOW_INCLUDE_FILES = NO + +SHOW_GROUPED_MEMB_INC = NO + +FORCE_LOCAL_INCLUDES = NO + +INLINE_INFO = YES + +SORT_MEMBER_DOCS = NO + +SORT_BRIEF_DOCS = NO +SORT_MEMBERS_CTORS_1ST = NO +SORT_GROUP_NAMES = NO +SORT_BY_SCOPE_NAME = NO +STRICT_PROTO_MATCHING = NO +GENERATE_TODOLIST = YES +GENERATE_TESTLIST = YES +GENERATE_BUGLIST = YES +GENERATE_DEPRECATEDLIST= YES +ENABLED_SECTIONS = YES +MAX_INITIALIZER_LINES = 30 +SHOW_USED_FILES = YES +SHOW_FILES = YES +SHOW_NAMESPACES = YES +FILE_VERSION_FILTER = +LAYOUT_FILE = ccpp_dox_layout.xml +CITE_BIB_FILES = library.bib +QUIET = NO +WARNINGS = YES +WARN_IF_UNDOCUMENTED = NO +WARN_IF_DOC_ERROR = YES +WARN_NO_PARAMDOC = NO +WARN_AS_ERROR = NO +WARN_FORMAT = +WARN_LOGFILE = +INPUT = pdftxt/mainpage.txt \ + pdftxt/all_shemes_list.txt \ + pdftxt/GFSv15p2_suite.txt \ + pdftxt/suite_FV3_GFS_v15p2.xml.txt \ + pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt \ + pdftxt/GFSv16beta_suite.txt \ + pdftxt/suite_FV3_GFS_v16beta.xml.txt \ + pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt \ + pdftxt/GSD_adv_suite.txt \ + pdftxt/CPT_adv_suite.txt \ + pdftxt/GFS_RRTMG.txt \ + pdftxt/GFS_SFCLYR.txt \ + pdftxt/GFS_NSST.txt \ + pdftxt/GFS_NOAH.txt \ + pdftxt/GFS_SFCSICE.txt \ + pdftxt/GFS_HEDMF.txt \ + pdftxt/GFS_SATMEDMFVDIFQ.txt \ +## pdftxt/GFS_NoahMP.txt \ + pdftxt/GFS_UGWPv0.txt \ + pdftxt/GFS_GWDPS.txt \ + pdftxt/GFS_OZPHYS.txt \ + pdftxt/GFS_H2OPHYS.txt \ + pdftxt/GFS_RAYLEIGH.txt \ + pdftxt/GFS_SAMF.txt \ + pdftxt/GFS_SAMFdeep.txt \ + pdftxt/GFS_SAMFshal.txt \ + pdftxt/GFDL_cloud.txt \ + pdftxt/GFS_CALPRECIPTYPE.txt \ +### pdftxt/rad_cld.txt \ + pdftxt/CPT_CSAW.txt \ + pdftxt/CPT_MG3.txt \ + pdftxt/GSD_MYNN_EDMF.txt \ + pdftxt/GSD_CU_GF_deep.txt \ + pdftxt/GSD_RUCLSM.txt \ + pdftxt/GSD_THOMPSON.txt \ +### pdftxt/GFSphys_namelist.txt \ +### pdftxt/GFS_STOCHY_PHYS.txt \ + pdftxt/suite_input.nml.txt \ +### in-core MP + ../gfdl_fv_sat_adj.F90 \ +### time_vary + ../GFS_time_vary_pre.fv3.F90 \ + ../GFS_rad_time_vary.fv3.F90 \ + ../GFS_phys_time_vary.fv3.F90 \ + ../ozne_def.f \ + ../ozinterp.f90 \ + ../h2o_def.f \ + ../h2ointerp.f90 \ + ../aerclm_def.F \ + ../aerinterp.F90 \ + ../iccn_def.F \ + ../iccninterp.F90 \ + ../sfcsub.F \ + ../gcycle.F90 \ +### Radiation +### ../GFS_rrtmg_pre.F90 \ +### ../rrtmg_sw_pre.F90 \ + ../radsw_main.f \ +### ../rrtmg_sw_post.F90 \ +### ../rrtmg_lw_pre.F90 \ + ../radlw_main.f \ +### ../rrtmg_lw_post.F90 \ + ../radiation_aerosols.f \ + ../radiation_astronomy.f \ + ../radiation_clouds.f \ + ../radiation_gases.f \ + ../radiation_surface.f \ + ../radlw_param.f \ + ../radlw_datatb.f \ + ../radsw_param.f \ + ../radsw_datatb.f \ + ../dcyc2.f \ +### Land Surface + ../sfc_diff.f \ + ../sfc_nst.f \ + ../sfc_ocean.F \ + ../module_nst_model.f90 \ + ../module_nst_parameters.f90 \ + ../module_nst_water_prop.f90 \ + ../sfc_drv.f \ + ../sflx.f \ + ../namelist_soilveg.f \ + ../set_soilveg.f \ +### Sea Ice Surface + ../sfc_sice.f \ +### PBL + ../moninedmf.f \ + ../mfpbl.f \ + ../tridi.f \ +### satmedmf +## ../satmedmfvdif.F \ + ../satmedmfvdifq.F \ + ../mfpbltq.f \ + ../mfscuq.f \ + ../tridi.f \ +### Orographic Gravity Wave + ../GFS_GWD_generic.F90 \ + ../cires_ugwp.F90 \ + ../gwdps.f \ + ../ugwp_driver_v0.F \ + ../cires_ugwp_triggers.F90 \ + ../cires_ugwp_module.F90 \ + ../cires_ugwp_utils.F90 \ + ../cires_ugwp_solvers.F90 \ +### ../cires_ugwp_post.F90 \ +### ../cires_ugwp_initialize.F90 \ + ../cires_vert_wmsdis.F90 \ + ../cires_vert_orodis.F90 \ + ../cires_vert_lsatdis.F90 \ +### Rayleigh Dampling + ../rayleigh_damp.f \ +### Prognostic Ozone + ../ozphys_2015.f \ +### ../ozphys.f \ +### stratospheric h2o + ../h2ophys.f \ +### Deep Convection + ../samfdeepcnv.f \ +### Convective Gravity Wave +### ../gwdc.f \ +### Shallow Convection + ../samfshalcnv.f \ + ../cnvc90.f \ +### Microphysics +### ../gscond.f \ +### ../precpd.f \ + ../module_bfmicrophysics.f \ +### GFDL cloud MP + ../gfdl_cloud_microphys.F90 \ + ../module_gfdl_cloud_microphys.F90 \ +### + ../GFS_MP_generic.F90 \ + ../calpreciptype.f90 \ +### stochy + ../GFS_stochastics.F90 \ +### ../surface_perturbation.F90 \ +### ../../stochastic_physics/stochastic_physics.F90 \ +### CPT + ../m_micro.F90 \ +### ../micro_mg2_0.F90 \ + ../micro_mg3_0.F90 \ + ../micro_mg_utils.F90 \ + ../cldmacro.F \ + ../aer_cloud.F \ + ../cldwat2m_micro.F \ + ../wv_saturation.F \ + ../cs_conv_aw_adj.F90 \ + ../cs_conv.F90 \ +### GSD + ../cu_gf_driver.F90 \ + ../cu_gf_deep.F90 \ + ../cu_gf_sh.F90 \ + ../module_MYNNrad_pre.F90 \ + ../module_MYNNrad_post.F90 \ + ../module_MYNNPBL_wrapper.F90 \ + ../module_bl_mynn.F90 \ +### ../module_MYNNSFC_wrapper.F90 \ +### ../module_sf_mynn.F90 \ + ../sfc_drv_ruc.F90 \ + ../module_sf_ruclsm.F90 \ + ../namelist_soilveg_ruc.F90 \ + ../set_soilveg_ruc.F90 \ + ../module_soil_pre.F90 \ + ../mp_thompson_pre.F90 \ + ../module_mp_thompson_make_number_concentrations.F90 \ + ../mp_thompson.F90 \ + ../module_mp_thompson.F90 \ + ../module_mp_radar.F90 \ + ../mp_thompson_post.F90 \ +### utils + ../funcphys.f90 \ + ../physparam.f \ + ../physcons.F90 \ + ../radcons.f90 \ + ../mersenne_twister.f +INPUT_ENCODING = UTF-8 +FILE_PATTERNS = *.f \ + *.F \ + *.F90 \ + *.f90 \ + *.nml \ + *.txt +RECURSIVE = YES +EXCLUDE = +EXCLUDE_SYMLINKS = NO +EXCLUDE_PATTERNS = +EXCLUDE_SYMBOLS = +EXAMPLE_PATH = ./ +EXAMPLE_PATTERNS = +EXAMPLE_RECURSIVE = NO +IMAGE_PATH = img +INPUT_FILTER = +FILTER_PATTERNS = +FILTER_SOURCE_FILES = NO +FILTER_SOURCE_PATTERNS = +USE_MDFILE_AS_MAINPAGE = +SOURCE_BROWSER = NO +INLINE_SOURCES = NO +STRIP_CODE_COMMENTS = YES +REFERENCED_BY_RELATION = YES +REFERENCES_RELATION = YES +REFERENCES_LINK_SOURCE = YES +SOURCE_TOOLTIPS = YES +USE_HTAGS = NO +VERBATIM_HEADERS = YES +#CLANG_ASSISTED_PARSING = NO +#CLANG_OPTIONS = +ALPHABETICAL_INDEX = NO +COLS_IN_ALPHA_INDEX = 5 +IGNORE_PREFIX = +GENERATE_HTML = YES +HTML_OUTPUT = html +HTML_FILE_EXTENSION = .html +HTML_HEADER = +HTML_FOOTER = +HTML_STYLESHEET = +HTML_EXTRA_STYLESHEET = ccpp_dox_extra_style.css +HTML_EXTRA_FILES = +HTML_COLORSTYLE_HUE = 220 +HTML_COLORSTYLE_SAT = 100 +HTML_COLORSTYLE_GAMMA = 80 +HTML_TIMESTAMP = NO +HTML_DYNAMIC_SECTIONS = NO +HTML_INDEX_NUM_ENTRIES = 100 +GENERATE_DOCSET = NO +DOCSET_FEEDNAME = "Doxygen generated docs" +DOCSET_BUNDLE_ID = org.doxygen.Project +DOCSET_PUBLISHER_ID = org.doxygen.Publisher +DOCSET_PUBLISHER_NAME = Publisher +GENERATE_HTMLHELP = NO +CHM_FILE = +HHC_LOCATION = +GENERATE_CHI = NO +CHM_INDEX_ENCODING = +BINARY_TOC = NO +TOC_EXPAND = NO +GENERATE_QHP = NO +QCH_FILE = +QHP_NAMESPACE = org.doxygen.Project +QHP_VIRTUAL_FOLDER = doc +QHP_CUST_FILTER_NAME = +QHP_CUST_FILTER_ATTRS = +QHP_SECT_FILTER_ATTRS = +QHG_LOCATION = +GENERATE_ECLIPSEHELP = NO +ECLIPSE_DOC_ID = org.doxygen.Project +DISABLE_INDEX = YES +GENERATE_TREEVIEW = YES +ENUM_VALUES_PER_LINE = 4 +TREEVIEW_WIDTH = 250 +EXT_LINKS_IN_WINDOW = NO +FORMULA_FONTSIZE = 10 +FORMULA_TRANSPARENT = YES +USE_MATHJAX = YES +MATHJAX_FORMAT = HTML-CSS +MATHJAX_RELPATH = https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2 +MATHJAX_EXTENSIONS = +MATHJAX_CODEFILE = +SEARCHENGINE = YES +SERVER_BASED_SEARCH = NO +EXTERNAL_SEARCH = NO +SEARCHENGINE_URL = +SEARCHDATA_FILE = searchdata.xml +EXTERNAL_SEARCH_ID = +EXTRA_SEARCH_MAPPINGS = +GENERATE_LATEX = YES +LATEX_OUTPUT = latex +LATEX_CMD_NAME = latex +MAKEINDEX_CMD_NAME = makeindex +COMPACT_LATEX = YES +PAPER_TYPE = a4 +EXTRA_PACKAGES = amsmath +LATEX_HEADER = +LATEX_FOOTER = +LATEX_EXTRA_STYLESHEET = +LATEX_EXTRA_FILES = +PDF_HYPERLINKS = YES +USE_PDFLATEX = YES +LATEX_BATCHMODE = NO +LATEX_HIDE_INDICES = YES +LATEX_SOURCE_CODE = NO + +LATEX_BIB_STYLE = plainnat + +LATEX_TIMESTAMP = NO + +GENERATE_RTF = NO + +RTF_OUTPUT = rtf +COMPACT_RTF = NO +RTF_HYPERLINKS = NO +RTF_STYLESHEET_FILE = +RTF_EXTENSIONS_FILE = +RTF_SOURCE_CODE = NO +GENERATE_MAN = NO +MAN_OUTPUT = man +MAN_EXTENSION = .3 +MAN_SUBDIR = +MAN_LINKS = NO +GENERATE_XML = NO +XML_OUTPUT = xml +XML_PROGRAMLISTING = YES +GENERATE_DOCBOOK = NO +DOCBOOK_OUTPUT = docbook +DOCBOOK_PROGRAMLISTING = NO +GENERATE_AUTOGEN_DEF = NO +GENERATE_PERLMOD = NO +PERLMOD_LATEX = NO +PERLMOD_PRETTY = YES +PERLMOD_MAKEVAR_PREFIX = +ENABLE_PREPROCESSING = NO +MACRO_EXPANSION = NO +EXPAND_ONLY_PREDEF = NO +SEARCH_INCLUDES = YES +INCLUDE_PATH = +INCLUDE_FILE_PATTERNS = +PREDEFINED = CCPP \ + MULTI_GASES \ + 0 +EXPAND_AS_DEFINED = +SKIP_FUNCTION_MACROS = YES +TAGFILES = +GENERATE_TAGFILE = +ALLEXTERNALS = NO +EXTERNAL_GROUPS = YES +EXTERNAL_PAGES = YES +PERL_PATH = /usr/bin/perl +CLASS_DIAGRAMS = YES +MSCGEN_PATH = +DIA_PATH = +HIDE_UNDOC_RELATIONS = NO +HAVE_DOT = YES +DOT_NUM_THREADS = 0 +DOT_FONTNAME = Helvetica +DOT_FONTSIZE = 10 +DOT_FONTPATH = +CLASS_GRAPH = NO +COLLABORATION_GRAPH = NO +GROUP_GRAPHS = YES +UML_LOOK = YES +UML_LIMIT_NUM_FIELDS = 10 +TEMPLATE_RELATIONS = NO +INCLUDE_GRAPH = YES +INCLUDED_BY_GRAPH = NO +CALL_GRAPH = YES +CALLER_GRAPH = NO +GRAPHICAL_HIERARCHY = YES +DIRECTORY_GRAPH = YES +DOT_IMAGE_FORMAT = svg +INTERACTIVE_SVG = NO +DOT_PATH = +DOTFILE_DIRS = +MSCFILE_DIRS = +DIAFILE_DIRS = +PLANTUML_JAR_PATH = +PLANTUML_INCLUDE_PATH = +DOT_GRAPH_MAX_NODES = 200 +MAX_DOT_GRAPH_DEPTH = 0 +DOT_TRANSPARENT = NO +DOT_MULTI_TARGETS = YES +GENERATE_LEGEND = YES +DOT_CLEANUP = YES diff --git a/physics/sfc_nst.f b/physics/sfc_nst.f index 3d0507ad9..b2fcb0948 100644 --- a/physics/sfc_nst.f +++ b/physics/sfc_nst.f @@ -29,19 +29,16 @@ end subroutine sfc_nst_finalize !! \section NSST_general_algorithm GFS Near-Surface Sea Temperature Scheme General Algorithm !> @{ subroutine sfc_nst_run & -! --- inputs: - & ( im, hvap, cp, hfus, jcal, eps, epsm1, rvrdm1, rd, rhw0, & + & ( im, hvap, cp, hfus, jcal, eps, epsm1, rvrdm1, rd, rhw0, & ! --- inputs: & pi, sbc, ps, u1, v1, t1, q1, tref, cm, ch, & & prsl1, prslki, prsik1, prslk1, wet, xlon, sinlat, & & stress, & & sfcemis, dlwflx, sfcnsw, rain, timestep, kdt, solhr,xcosz, & & wind, flag_iter, flag_guess, nstf_name1, nstf_name4, & & nstf_name5, lprnt, ipr, & -! --- input/output: - & tskin, tsurf, xt, xs, xu, xv, xz, zm, xtts, xzts, dt_cool, & + & tskin, tsurf, xt, xs, xu, xv, xz, zm, xtts, xzts, dt_cool, & ! --- input/output: & z_c, c_0, c_d, w_0, w_d, d_conv, ifd, qrain, & -! --- outputs: - & qsurf, gflux, cmm, chh, evap, hflx, ep, errmsg, errflg & + & qsurf, gflux, cmm, chh, evap, hflx, ep, errmsg, errflg & ! --- outputs: & ) ! ! ===================================================================== ! diff --git a/physics/sfc_ocean.F b/physics/sfc_ocean.F index 9635f30b8..508fb3b67 100644 --- a/physics/sfc_ocean.F +++ b/physics/sfc_ocean.F @@ -1,3 +1,9 @@ +!>\file sfc_ocean.F +!! This file contains an alternative GFS near-surface sea temperature +!! scheme when the model is initialized from GRIB2 data. + +!> This module contains the CCPP-compliant GFS near-surface sea temperature +!! scheme when the model is initialized from GRIB2 data. module sfc_ocean implicit none private @@ -15,19 +21,19 @@ end subroutine sfc_ocean_init subroutine sfc_ocean_finalize() end subroutine sfc_ocean_finalize +!>\defgroup gfs_ocean_main GFS Ocean scheme Module +!! This subroutine calculates thermodynamical properties over +!! open water. #if 0 !! \section arg_table_sfc_ocean_run Argument Table !! \htmlinclude sfc_ocean_run.html !! #endif subroutine sfc_ocean_run & -!................................... -! --- inputs: - & ( im, cp, rd, eps, epsm1, hvap, rvrdm1, ps, t1, q1, & + & ( im, cp, rd, eps, epsm1, hvap, rvrdm1, ps, t1, q1, & ! --- inputs & tskin, cm, ch, prsl1, prslki, wet, wind, & & flag_iter, & -! --- outputs: - & qsurf, cmm, chh, gflux, evap, hflx, ep, & + & qsurf, cmm, chh, gflux, evap, hflx, ep, & ! --- outputs & errmsg, errflg & & ) From f48b283ebabc42f1ea05d0ec59c51c6b01c24e6c Mon Sep 17 00:00:00 2001 From: Man Zhang Date: Mon, 2 Mar 2020 13:19:54 -0700 Subject: [PATCH 02/14] add two new suites: GFSv15p2_no_nsst and GFSv16beta_no_nsst and GFS ocean scientific documentation --- physics/cires_ugwp.F90 | 5 +- .../docs/{ufs_doxyfile => ccppv4_doxyfile} | 3 + physics/docs/library.bib | 50 +++--- physics/docs/pdftxt/GFS_OCEAN.txt | 16 ++ .../docs/pdftxt/GFSv15p2_no_nsst_suite.txt | 127 +++++++++++++ physics/docs/pdftxt/GFSv15p2_suite.txt | 10 +- .../docs/pdftxt/GFSv16beta_no_nsst_suite.txt | 167 ++++++++++++++++++ physics/docs/pdftxt/GFSv16beta_suite.txt | 10 +- physics/docs/pdftxt/all_shemes_list.txt | 1 + physics/docs/pdftxt/mainpage.txt | 17 +- physics/docs/pdftxt/suite_input.nml.txt | 8 +- physics/sfc_ocean.F | 4 +- 12 files changed, 368 insertions(+), 50 deletions(-) rename physics/docs/{ufs_doxyfile => ccppv4_doxyfile} (98%) create mode 100644 physics/docs/pdftxt/GFS_OCEAN.txt create mode 100644 physics/docs/pdftxt/GFSv15p2_no_nsst_suite.txt create mode 100644 physics/docs/pdftxt/GFSv16beta_no_nsst_suite.txt diff --git a/physics/cires_ugwp.F90 b/physics/cires_ugwp.F90 index ac12764cc..89cea0595 100644 --- a/physics/cires_ugwp.F90 +++ b/physics/cires_ugwp.F90 @@ -146,7 +146,8 @@ end subroutine cires_ugwp_finalize !! \htmlinclude cires_ugwp_run.html !! -!>\section gen_cires_ugwp CIRES UGWP General Algorithm +!> \section gen_cires_ugwp CIRES UGWP Scheme General Algorithm +!! @{ subroutine cires_ugwp_run(do_ugwp, me, master, im, levs, ntrac, dtp, kdt, lonr, & oro, oro_uf, hprime, nmtvr, oc, theta, sigma, gamma, elvmax, clx, oa4, & do_tofd, ldiag_ugwp, cdmbgwd, xlat, xlat_d, sinlat, coslat, area, & @@ -367,4 +368,6 @@ subroutine cires_ugwp_run(do_ugwp, me, master, im, levs, ntrac, dtp, kdt, lonr end subroutine cires_ugwp_run +!! @} +!>@} end module cires_ugwp diff --git a/physics/docs/ufs_doxyfile b/physics/docs/ccppv4_doxyfile similarity index 98% rename from physics/docs/ufs_doxyfile rename to physics/docs/ccppv4_doxyfile index 1b77aafb6..e80b27eb9 100644 --- a/physics/docs/ufs_doxyfile +++ b/physics/docs/ccppv4_doxyfile @@ -103,9 +103,11 @@ WARN_LOGFILE = INPUT = pdftxt/mainpage.txt \ pdftxt/all_shemes_list.txt \ pdftxt/GFSv15p2_suite.txt \ + pdftxt/GFSv15p2_no_nsst_suite.txt \ pdftxt/suite_FV3_GFS_v15p2.xml.txt \ pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt \ pdftxt/GFSv16beta_suite.txt \ + pdftxt/GFSv16beta_no_nsst_suite.txt \ pdftxt/suite_FV3_GFS_v16beta.xml.txt \ pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt \ pdftxt/GSD_adv_suite.txt \ @@ -113,6 +115,7 @@ INPUT = pdftxt/mainpage.txt \ pdftxt/GFS_RRTMG.txt \ pdftxt/GFS_SFCLYR.txt \ pdftxt/GFS_NSST.txt \ + pdftxt/GFS_OCEAN.txt \ pdftxt/GFS_NOAH.txt \ pdftxt/GFS_SFCSICE.txt \ pdftxt/GFS_HEDMF.txt \ diff --git a/physics/docs/library.bib b/physics/docs/library.bib index cfc3e3304..dd2b2042e 100644 --- a/physics/docs/library.bib +++ b/physics/docs/library.bib @@ -1,7 +1,7 @@ %% This BibTeX bibliography file was created using BibDesk. %% http://bibdesk.sourceforge.net/ -%% Created for Man Zhang at 2020-02-24 10:07:00 -0700 +%% Created for Man Zhang at 2020-03-02 13:10:25 -0700 %% Saved with string encoding Unicode (UTF-8) @@ -1859,12 +1859,12 @@ @article{zeng_and_dickinson_1998 @conference{zheng_et_al_2009, Address = {Omaha, Nebraska}, Author = {W. Zheng and H. Wei and J. Meng and M. Ek and K. Mitchell and J. Derber and X. Zeng and Z. Wang}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBWLi4vLi4vLi4vLi4vLi4vRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGZPEQIgAAAAAAIgAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADT4djXSCsAAANl5rUfSW1wcm92ZW1lbnRfb2ZfTGFuZCMzNjVGRjBGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2X/D9aQ780AAAAAAAAAAAAFAAMAAAkgAAAAAAAAAAAAAAAAAAAACE5PQUhfTFNNABAACAAA0+ItNwAAABEACAAA1pFSPQAAAAEAEANl5rUAD8YgAA/GDwAGL94AAgBRTWFjaW50b3NoIEhEOlVzZXJzOgBtYW4uemhhbmc6AERlc2t0b3A6AE5PQUhfTFNNOgBJbXByb3ZlbWVudF9vZl9MYW5kIzM2NUZGMEYucGRmAAAOAG4ANgBJAG0AcAByAG8AdgBlAG0AZQBuAHQAXwBvAGYAXwBMAGEAbgBkAF8AUwB1AHIAZgBhAGMAZQBfAFMAawBpAG4AXwBUAGUAbQBwAGUAcgBhAHQAdQByAGUAXwBpAG4AXwBOAEMALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAFdVc2Vycy9tYW4uemhhbmcvRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGYAABMAAS8AABUAAgAQ//8AAAAIAA0AGgAkAH0AAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACoQ==}, Date-Added = {2018-01-26 22:19:06 +0000}, Date-Modified = {2018-01-29 23:51:37 +0000}, Organization = {The 23rd Conference on Weather Analysis and Forecasting (WAF)/19th Conference on Numerical Weather Prediction(NWP)}, Title = {Improvement of land surface skin temperature in NCEP Operational NWP models and its impact on satellite Data Assimilation}, - Year = {2009}} + Year = {2009}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBWLi4vLi4vLi4vLi4vLi4vRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGZPEQIgAAAAAAIgAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADT4djXSCsAAANl5rUfSW1wcm92ZW1lbnRfb2ZfTGFuZCMzNjVGRjBGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2X/D9aQ780AAAAAAAAAAAAFAAMAAAkgAAAAAAAAAAAAAAAAAAAACE5PQUhfTFNNABAACAAA0+ItNwAAABEACAAA1pFSPQAAAAEAEANl5rUAD8YgAA/GDwAGL94AAgBRTWFjaW50b3NoIEhEOlVzZXJzOgBtYW4uemhhbmc6AERlc2t0b3A6AE5PQUhfTFNNOgBJbXByb3ZlbWVudF9vZl9MYW5kIzM2NUZGMEYucGRmAAAOAG4ANgBJAG0AcAByAG8AdgBlAG0AZQBuAHQAXwBvAGYAXwBMAGEAbgBkAF8AUwB1AHIAZgBhAGMAZQBfAFMAawBpAG4AXwBUAGUAbQBwAGUAcgBhAHQAdQByAGUAXwBpAG4AXwBOAEMALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAFdVc2Vycy9tYW4uemhhbmcvRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGYAABMAAS8AABUAAgAQ//8AAAAIAA0AGgAkAH0AAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACoQ==}} @article{chen_et_al_1997, Author = {F. Chen and Z. Janjic and K. Mitchell}, @@ -2103,7 +2103,6 @@ @article{iacono_et_al_2008 @article{grant_2001, Abstract = {A closure for the fluxes of mass, heat, and moisture at cloud base in the cumulus-capped boundary layer is developed. The cloud-base mass flux is obtained from a simplifed turbulence kinetic energy (TKE) budget for the sub-cloud layer, in which cumulus convection is assumed to be associated with a transport of TKE from the sub-cloud layer to the cloud layer.The heat and moisture fluxes are obtained from a jump model based on the virtual-potential-temperature equation. A key part of this parametrization is the parametrization of the virtual-temperature flux at the top of the transition zone between the sub-cloud and cloud layers.It is argued that pressure fluctuations must be responsible for the transport of TKE from the cloud layer to the sub-cloud layer.}, Author = {A. L. M. Grant}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JhbnQvMjAwMS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoiV4IMjAwMS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARgJuNOHLk4AAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyYW50AAAQAAgAANHneLIAAAARAAgAANOHgq4AAAABABgAKIleAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyYW50OgAyMDAxLnBkZgAADgASAAgAMgAwADAAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmFudC8yMDAxLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Date-Added = {2016-06-15 22:11:22 +0000}, Date-Modified = {2018-07-06 19:02:34 +0000}, Doi = {10.1002/qj.49712757209}, @@ -2117,13 +2116,13 @@ @article{grant_2001 Url = {http://dx.doi.org/10.1002/qj.49712757209}, Volume = {127}, Year = {2001}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JhbnQvMjAwMS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoiV4IMjAwMS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARgJuNOHLk4AAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyYW50AAAQAAgAANHneLIAAAARAAgAANOHgq4AAAABABgAKIleAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyYW50OgAyMDAxLnBkZgAADgASAAgAMgAwADAAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmFudC8yMDAxLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/qj.49712757209}} @article{zhang_and_wu_2003, Abstract = {Abstract This study uses a 2D cloud-resolving model to investigate the vertical transport of horizontal momentum and to understand the role of a convection-generated perturbation pressure field in the momentum transport by convective systems during part of the Tropical Ocean and Global Atmosphere Coupled Ocean?Atmosphere Response Experiment (TOGA COARE) Intensive Observation Period. It shows that convective updrafts transport a significant amount of momentum vertically. This transport is downgradient in the easterly wind regime, but upgradient during a westerly wind burst. The differences in convective momentum transport between easterly and westerly wind regimes are examined. The perturbation pressure gradient accounts for an important part of the apparent momentum source. In general it is opposite in sign to the product of cloud mass flux and the vertical wind shear, with smaller magnitude. Examination of the dynamic forcing to the pressure field demonstrates that the linear forcing representing the interaction between the convective updrafts and the large-scale wind shear is the dominant term, while the nonlinear forcing is of secondary importance. Thus, parameterization schemes taking into account the linear interaction between the convective updrafts and the large-scale wind shear can capture the essential features of the perturbation pressure field. The parameterization scheme for momentum transport by Zhang and Cho is evaluated using the model simulation data. The parameterized pressure gradient force using the scheme is in excellent agreement with the simulated one. The parameterized apparent momentum source is also in good agreement with the model simulation. Other parameterization methods for the pressure gradient are also discussed.}, Annote = {doi: 10.1175/1520-0469(2003)060<1120:CMTAPP>2.0.CO;2}, Author = {Zhang, Guang J. and Wu, Xiaoqing}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvWmhhbmcvMjAwMy5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqjuYIMjAwMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrUP9K0L8MAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVpoYW5nAAAQAAgAANHneLIAAAARAAgAANK0kjMAAAABABgAKo7mAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFpoYW5nOgAyMDAzLnBkZgAADgASAAgAMgAwADAAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9aaGFuZy8yMDAzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Booktitle = {Journal of the Atmospheric Sciences}, Da = {2003/05/01}, Date-Added = {2016-06-14 23:39:50 +0000}, @@ -2142,13 +2141,13 @@ @article{zhang_and_wu_2003 Url = {http://dx.doi.org/10.1175/1520-0469(2003)060<1120:CMTAPP>2.0.CO;2}, Volume = {60}, Year = {2003}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvWmhhbmcvMjAwMy5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqjuYIMjAwMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrUP9K0L8MAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVpoYW5nAAAQAAgAANHneLIAAAARAAgAANK0kjMAAAABABgAKo7mAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFpoYW5nOgAyMDAzLnBkZgAADgASAAgAMgAwADAAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9aaGFuZy8yMDAzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0469(2003)060%3C1120:CMTAPP%3E2.0.CO;2}} @article{fritsch_and_chappell_1980, Abstract = {Abstract A parameterization formulation for incorporating the effects of midlatitude deep convection into mesoscale-numerical models is presented. The formulation is based on the hypothesis that the buoyant energy available to a parcel, in combination with a prescribed period of time for the convection to remove that energy, can be used to regulate the amount of convection in a mesoscale numerical model grid element. Individual clouds are represented as entraining moist updraft and downdraft plumes. The fraction of updraft condensate evaporated in moist downdrafts is determined from an empirical relationship between the vertical shear of the horizontal wind and precipitation efficiency. Vertical transports of horizontal momentum and warming by compensating subsidence are included in the parameterization. Since updraft and downdraft areas are sometimes a substantial fraction of mesoscale model grid-element areas, grid-point temperatures (adjusted for convection) are an area-weighted mean of updraft, downdraft and environmental temperatures.}, Annote = {doi: 10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2}, Author = {Fritsch, J. M. and Chappell, C. F.}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvRnJpdHNjaC8xOTgwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAARCuMwgxOTgwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEKs103xvpgAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHRnJpdHNjaAAAEAAIAADR53iyAAAAEQAIAADTfMQGAAAAAQAYARCuMwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBGcml0c2NoOgAxOTgwLnBkZgAADgASAAgAMQA5ADgAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Gcml0c2NoLzE5ODAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Booktitle = {Journal of the Atmospheric Sciences}, Da = {1980/08/01}, Date = {1980/08/01}, @@ -2169,12 +2168,12 @@ @article{fritsch_and_chappell_1980 Volume = {37}, Year = {1980}, Year1 = {1980}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvRnJpdHNjaC8xOTgwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAARCuMwgxOTgwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEKs103xvpgAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHRnJpdHNjaAAAEAAIAADR53iyAAAAEQAIAADTfMQGAAAAAQAYARCuMwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBGcml0c2NoOgAxOTgwLnBkZgAADgASAAgAMQA5ADgAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Gcml0c2NoLzE5ODAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0469(1980)037%3C1722:NPOCDM%3E2.0.CO;2}} @article{bechtold_et_al_2008, Abstract = {Advances in simulating atmospheric variability with the ECMWF model are presented that stem from revisions of the convection and diffusion parametrizations. The revisions concern in particular the introduction of a variable convective adjustment time-scale, a convective entrainment rate proportional to the environmental relative humidity, as well as free tropospheric diffusion coefficients for heat and momentum based on Monin--Obukhov functional dependencies.The forecasting system is evaluated against analyses and observations using high-resolution medium-range deterministic and ensemble forecasts, monthly and seasonal integrations, and decadal integrations with coupled atmosphere-ocean models. The results show a significantly higher and more realistic level of model activity in terms of the amplitude of tropical and extratropical mesoscale, synoptic and planetary perturbations. Importantly, with the higher variability and reduced bias not only the probabilistic scores are improved, but also the midlatitude deterministic scores in the short and medium ranges. Furthermore, for the first time the model is able to represent a realistic spectrum of convectively coupled equatorial Kelvin and Rossby waves, and maintains a realistic amplitude of the Madden--Julian oscillation (MJO) during monthly forecasts. However, the propagation speed of the MJO is slower than observed. The higher tropical tropospheric wave activity also results in better stratospheric temperatures and winds through the deposition of momentum.The partitioning between convective and resolved precipitation is unaffected by the model changes with roughly 62% of the total global precipitation being of the convective type. Finally, the changes in convection and diffusion parametrizations resulted in a larger spread of the ensemble forecasts, which allowed the amplitude of the initial perturbations in the ensemble prediction system to decrease by 30%. Copyright {\copyright} 2008 Royal Meteorological Society}, Author = {Bechtold, Peter and K{\"o}hler, Martin and Jung, Thomas and Doblas-Reyes, Francisco and Leutbecher, Martin and Rodwell, Mark J. and Vitart, Frederic and Balsamo, Gianpaolo}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAobfkIMjAwOC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARZce9OEjEwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJlY2h0b2xkABAACAAA0ed4sgAAABEACAAA04TgrAAAAAEAGAAobfkAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQmVjaHRvbGQ6ADIwMDgucGRmAA4AEgAIADIAMAAwADgALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Date-Added = {2016-06-14 23:11:58 +0000}, Date-Modified = {2016-06-14 23:11:58 +0000}, Doi = {10.1002/qj.289}, @@ -2188,12 +2187,12 @@ @article{bechtold_et_al_2008 Url = {http://dx.doi.org/10.1002/qj.289}, Volume = {134}, Year = {2008}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAobfkIMjAwOC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARZce9OEjEwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJlY2h0b2xkABAACAAA0ed4sgAAABEACAAA04TgrAAAAAEAGAAobfkAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQmVjaHRvbGQ6ADIwMDgucGRmAA4AEgAIADIAMAAwADgALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/qj.289}} @article{han_and_pan_2011, Annote = {doi: 10.1175/WAF-D-10-05038.1}, Author = {Han, Jongil and Pan, Hua-Lu}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMTEucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADC1cfTGvlvAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0xtNzwAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDExLnBkZgAADgASAAgAMgAwADEAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAxMS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Booktitle = {Weather and Forecasting}, Da = {2011/08/01}, Date = {2011/08/01}, @@ -2214,22 +2213,22 @@ @article{han_and_pan_2011 Volume = {26}, Year = {2011}, Year1 = {2011}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMTEucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADC1cfTGvlvAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0xtNzwAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDExLnBkZgAADgASAAgAMgAwADEAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAxMS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/WAF-D-10-05038.1}} @article{pan_and_wu_1995, Author = {Pan, H. -L. and W.-S. Wu}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvUGFuLzE5OTUucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAwtTNCDE5OTUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCtU/TGvMJAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANQYW4AABAACAAA0ed4sgAAABEACAAA0xtHaQAAAAEAGADC1M0AKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAUGFuOgAxOTk1LnBkZgAADgASAAgAMQA5ADkANQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9QYW4vMTk5NS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Date-Added = {2016-06-14 23:06:41 +0000}, Date-Modified = {2016-06-14 23:06:41 +0000}, Journal = {NMC Office Note, No. 409}, Pages = {40pp}, Title = {Implementing a Mass Flux Convection Parameterization Package for the NMC Medium-Range Forecast Model}, - Year = {1995}} + Year = {1995}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvUGFuLzE5OTUucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAwtTNCDE5OTUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCtU/TGvMJAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANQYW4AABAACAAA0ed4sgAAABEACAAA0xtHaQAAAAEAGADC1M0AKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAUGFuOgAxOTk1LnBkZgAADgASAAgAMQA5ADkANQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9QYW4vMTk5NS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}} @article{grell_1993, Annote = {doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2}, Author = {Grell, Georg A.}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JlbGwvMTk5My5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoie0IMTk5My5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMK4dtMa9LMAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyZWxsAAAQAAgAANHneLIAAAARAAgAANMbSRMAAAABABgAKIntAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyZWxsOgAxOTkzLnBkZgAADgASAAgAMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmVsbC8xOTkzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Booktitle = {Monthly Weather Review}, Da = {1993/03/01}, Date = {1993/03/01}, @@ -2250,11 +2249,11 @@ @article{grell_1993 Volume = {121}, Year = {1993}, Year1 = {1993}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JlbGwvMTk5My5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoie0IMTk5My5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMK4dtMa9LMAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyZWxsAAAQAAgAANHneLIAAAARAAgAANMbSRMAAAABABgAKIntAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyZWxsOgAxOTkzLnBkZgAADgASAAgAMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmVsbC8xOTkzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0493(1993)121%3C0764:PEOAUB%3E2.0.CO;2}} @article{arakawa_and_schubert_1974, Author = {Arakawa, A and Schubert, WH}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQXJha2F3YS8xOTc0LnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAChtVQgxOTc0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKG1ctM8h9AAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHQXJha2F3YQAAEAAIAADR53iyAAAAEQAIAAC0z4RkAAAAAQAYAChtVQAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBBcmFrYXdhOgAxOTc0LnBkZgAADgASAAgAMQA5ADcANAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9BcmFrYXdhLzE5NzQucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Date-Added = {2016-06-14 23:04:30 +0000}, Date-Modified = {2018-07-18 19:00:17 +0000}, Isi = {A1974S778800004}, @@ -2267,6 +2266,7 @@ @article{arakawa_and_schubert_1974 Title = {Interaction of a cumulus cloud ensemble with the large-scale environment, Part I}, Volume = {31}, Year = {1974}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQXJha2F3YS8xOTc0LnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAChtVQgxOTc0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKG1ctM8h9AAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHQXJha2F3YQAAEAAIAADR53iyAAAAEQAIAAC0z4RkAAAAAQAYAChtVQAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBBcmFrYXdhOgAxOTc0LnBkZgAADgASAAgAMQA5ADcANAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9BcmFrYXdhLzE5NzQucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/A1974S778800004}} @article{harshvardhan_et_al_1989, @@ -2500,7 +2500,6 @@ @article{akmaev_1991 @article{siebesma_et_al_2007, Abstract = {A better conceptual understanding and more realistic parameterizations of convective boundary layers in climate and weather prediction models have been major challenges in meteorological research. In particular, parameterizations of the dry convective boundary layer, in spite of the absence of water phase-changes and its consequent simplicity as compared to moist convection, typically suffer from problems in attempting to represent realistically the boundary layer growth and what is often referred to as countergradient fluxes. The eddy-diffusivity (ED) approach has been relatively successful in representing some characteristics of neutral boundary layers and surface layers in general. The mass-flux (MF) approach, on the other hand, has been used for the parameterization of shallow and deep moist convection. In this paper, a new approach that relies on a combination of the ED and MF parameterizations (EDMF) is proposed for the dry convective boundary layer. It is shown that the EDMF approach follows naturally from a decomposition of the turbulent fluxes into 1) a part that includes strong organized updrafts, and 2) a remaining turbulent field. At the basis of the EDMF approach is the concept that nonlocal subgrid transport due to the strong updrafts is taken into account by the MF approach, while the remaining transport is taken into account by an ED closure. Large-eddy simulation (LES) results of the dry convective boundary layer are used to support the theoretical framework of this new approach and to determine the parameters of the EDMF model. The performance of the new formulation is evaluated against LES results, and it is shown that the EDMF closure is able to reproduce the main properties of dry convective boundary layers in a realistic manner. Furthermore, it will be shown that this approach has strong advantages over the more traditional countergradient approach, especially in the entrainment layer. As a result, this EDMF approach opens the way to parameterize the clear and cumulus-topped boundary layer in a simple and unified way.}, Author = {Siebesma, A. Pier and Soares, Pedro M. M. and Teixeira, Joao}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqYEwIMjAwNy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACphyMc7+4hQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAACFNpZWJlc21hABAACAAA0ed4sgAAABEACAAAxzxd+AAAAAEAGAAqYEwAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAU2llYmVzbWE6ADIwMDcucGRmAA4AEgAIADIAMAAwADcALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Date-Added = {2016-05-20 17:17:49 +0000}, Date-Modified = {2016-05-20 17:17:49 +0000}, Doi = {DOI 10.1175/JAS3888.1}, @@ -2514,12 +2513,12 @@ @article{siebesma_et_al_2007 Title = {A combined eddy-diffusivity mass-flux approach for the convective boundary layer}, Volume = {64}, Year = {2007}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqYEwIMjAwNy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACphyMc7+4hQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAACFNpZWJlc21hABAACAAA0ed4sgAAABEACAAAxzxd+AAAAAEAGAAqYEwAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAU2llYmVzbWE6ADIwMDcucGRmAA4AEgAIADIAMAAwADcALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/000245742600011}} @article{soares_et_al_2004, Abstract = {Recently, a new consistent way of parametrizing simultaneously local and non-local turbulent transport for the convective atmospheric boundary layer has been proposed and tested for the clear boundary layer. This approach assumes that in the convective boundary layer the subgrid-scale fluxes result from two different mixing scales: small eddies, that are parametrized by an eddy-diffusivity approach, and thermals, which are represented by a mass-flux contribution. Since the interaction between the cloud layer and the underlying sub-cloud layer predominantly takes place through strong updraughts, this approach offers an interesting avenue of establishing a unified description of the turbulent transport in the cumulus-topped boundary layer. This paper explores the possibility of such a new approach for the cumulus-topped boundary layer. In the sub-cloud and cloud layers, the mass-flux term represents the effect of strong updraughts. These are modelled by a simple entraining parcel, which determines the mean properties of the strong updraughts, the boundary-layer height, the lifting condensation level and cloud top. The residual smaller-scale turbulent transport is parametrized with an eddy-diffusivity approach that uses a turbulent kinetic energy closure. The new scheme is implemented and tested in the research model MesoNH. Copyright {\copyright} 2004 Royal Meteorological Society}, Author = {Soares, P. M. M. and Miranda, P. M. A. and Siebesma, A. P. and Teixeira, J.}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBCLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmTxEBxgAAAAABxgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWIC2CDIwMDQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYf6DSsqNwAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAAZTb2FyZXMAEAAIAADR53iyAAAAEQAIAADSswXgAAAAAQAYAFiAtgAobJYAKGyLAChnewAbXgcAAphcAAIAXE1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBTb2FyZXM6ADIwMDQucGRmAA4AEgAIADIAMAAwADQALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAElVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmAAATAAEvAAAVAAIADf//AAAACAANABoAJABpAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjM=}, Date-Added = {2016-05-20 17:17:49 +0000}, Date-Modified = {2016-05-20 17:17:49 +0000}, Doi = {10.1256/qj.03.223}, @@ -2533,11 +2532,11 @@ @article{soares_et_al_2004 Url = {http://dx.doi.org/10.1256/qj.03.223}, Volume = {130}, Year = {2004}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBCLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmTxEBxgAAAAABxgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWIC2CDIwMDQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYf6DSsqNwAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAAZTb2FyZXMAEAAIAADR53iyAAAAEQAIAADSswXgAAAAAQAYAFiAtgAobJYAKGyLAChnewAbXgcAAphcAAIAXE1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBTb2FyZXM6ADIwMDQucGRmAA4AEgAIADIAMAAwADQALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAElVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmAAATAAEvAAAVAAIADf//AAAACAANABoAJABpAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjM=}, Bdsk-Url-1 = {http://dx.doi.org/10.1256/qj.03.223}} @article{troen_and_mahrt_1986, Author = {Troen, IB and Mahrt, L.}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvVHJvZW4vMTk4Ni5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAABNeegIMTk4Ni5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE13kNKUWwUAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVRyb2VuAAAQAAgAANHneLIAAAARAAgAANKUvXUAAAABABgATXnoAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFRyb2VuOgAxOTg2LnBkZgAADgASAAgAMQA5ADgANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Ucm9lbi8xOTg2LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Date-Added = {2016-05-20 17:17:49 +0000}, Date-Modified = {2016-05-20 17:17:49 +0000}, Doi = {10.1007/BF00122760}, @@ -2551,13 +2550,13 @@ @article{troen_and_mahrt_1986 Url = {http://dx.doi.org/10.1007/BF00122760}, Volume = {37}, Year = {1986}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvVHJvZW4vMTk4Ni5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAABNeegIMTk4Ni5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE13kNKUWwUAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVRyb2VuAAAQAAgAANHneLIAAAARAAgAANKUvXUAAAABABgATXnoAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFRyb2VuOgAxOTg2LnBkZgAADgASAAgAMQA5ADgANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Ucm9lbi8xOTg2LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1007/BF00122760}} @article{macvean_and_mason_1990, Abstract = {Abstract In a recent paper, Kuo and Schubert demonstrated the lack of observational support for the relevance of the criterion for cloud-top entrainment instability proposed by Randall and by Deardorff. Here we derive a new criterion, based on a model of the instability as resulting from the energy released close to cloud top, by Mixing between saturated boundary-layer air and unsaturated air from above the capping inversion. The condition is derived by considering the net conversion from potential to kinetic energy in a system consisting of two layers of fluid straddling cloud-top, when a small amount of mixing occurs between these layers. This contrasts with previous analyses, which only considered the change in buoyancy of the cloud layer when unsaturated air is mixed into it. In its most general form, this new criterion depends on the ratio of the depths of the layers involved in the mixing. It is argued that, for a self-sustaining instability, there must be a net release of kinetic energy on the same depth and time scales as the entrainment process itself. There are two plausible ways in which this requirement may be satisfied. Either one takes the depths of the layers involved in the mixing to each be comparable to the vertical scale of the entrainment process, which is typically of order tens of meters or less, or alternatively, one must allow for the efficiency with which energy released by mixing through a much deeper lower layer becomes available to initiate further entrainment. In both cases the same criterion for instability results. This criterion is much more restrictive than that proposed by Randall and by Deardorff; furthermore, the observational data is then consistent with the predictions of the current theory. Further analysis provides estimates of the turbulent fluxes associated with cloud-top entrainment instability. This analysis effectively constitutes an energetically consistent turbulence closure for models of boundary layers with cloud. The implications for such numerical models are discussed. Comparisons are also made with other possible criteria for cloud-top entrainment instability which have recently been suggested.}, Annote = {doi: 10.1175/1520-0469(1990)047<1012:CTEITS>2.0.CO;2}, Author = {MacVean, M. K. and Mason, P. J.}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTWFjVmVhbi8xOTkwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAFx8zwgxOTkwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXHyn0rkkRQAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHTWFjVmVhbgAAEAAIAADR53iyAAAAEQAIAADSuYa1AAAAAQAYAFx8zwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBNYWNWZWFuOgAxOTkwLnBkZgAADgASAAgAMQA5ADkAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9NYWNWZWFuLzE5OTAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Booktitle = {Journal of the Atmospheric Sciences}, Da = {1990/04/01}, Date-Added = {2016-05-20 17:16:05 +0000}, @@ -2576,11 +2575,11 @@ @article{macvean_and_mason_1990 Url = {http://dx.doi.org/10.1175/1520-0469(1990)047<1012:CTEITS>2.0.CO;2}, Volume = {47}, Year = {1990}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTWFjVmVhbi8xOTkwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAFx8zwgxOTkwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXHyn0rkkRQAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHTWFjVmVhbgAAEAAIAADR53iyAAAAEQAIAADSuYa1AAAAAQAYAFx8zwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBNYWNWZWFuOgAxOTkwLnBkZgAADgASAAgAMQA5ADkAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9NYWNWZWFuLzE5OTAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0469(1990)047%3C1012:CTEITS%3E2.0.CO;2}} @article{louis_1979, Author = {Louis, JF}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG91aXMvMTk3OS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAonogIMTk3OS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiej8FuU4pQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUxvdWlzAAAQAAgAANHneLIAAAARAAgAAMFutfoAAAABABgAKJ6IAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvdWlzOgAxOTc5LnBkZgAADgASAAgAMQA5ADcAOQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Mb3Vpcy8xOTc5LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Date-Added = {2016-05-20 17:15:52 +0000}, Date-Modified = {2016-05-20 17:15:52 +0000}, Isi = {A1979HT69700004}, @@ -2593,12 +2592,12 @@ @article{louis_1979 Title = {A PARAMETRIC MODEL OF VERTICAL EDDY FLUXES IN THE ATMOSPHERE}, Volume = {17}, Year = {1979}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG91aXMvMTk3OS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAonogIMTk3OS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiej8FuU4pQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUxvdWlzAAAQAAgAANHneLIAAAARAAgAAMFutfoAAAABABgAKJ6IAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvdWlzOgAxOTc5LnBkZgAADgASAAgAMQA5ADcAOQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Mb3Vpcy8xOTc5LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/A1979HT69700004}} @article{lock_et_al_2000, Abstract = {A new boundary layer turbulent mixing scheme has been developed for use in the UKMO weather forecasting and climate prediction models. This includes a representation of nonlocal mixing (driven by both surface fluxes and cloud-top processes) in unstable layers, either coupled to or decoupled from the surface, and an explicit entrainment parameterization. The scheme is formulated in moist conserved variables so that it can treat both dry and cloudy layers. Details of the scheme and examples of its performance in single-column model tests are presented.}, Author = {Lock, AP and Brown, AR and Bush, MR and Martin, GM and Smith, RNB}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAACibewgyMDAwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJuLywPrPAAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAETG9jawAQAAgAANHneLIAAAARAAgAAMsETawAAAABABgAKJt7AChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvY2s6ADIwMDAucGRmAA4AEgAIADIAMAAwADAALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Date-Added = {2016-05-20 17:15:36 +0000}, Date-Modified = {2016-05-20 17:15:36 +0000}, Isi = {000089461100008}, @@ -2611,13 +2610,13 @@ @article{lock_et_al_2000 Title = {A new boundary layer mixing scheme. {P}art {I}: Scheme description and single-column model tests}, Volume = {128}, Year = {2000}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAACibewgyMDAwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJuLywPrPAAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAETG9jawAQAAgAANHneLIAAAARAAgAAMsETawAAAABABgAKJt7AChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvY2s6ADIwMDAucGRmAA4AEgAIADIAMAAwADAALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/000089461100008}} @article{hong_and_pan_1996, Abstract = {Abstract In this paper, the incorporation of a simple atmospheric boundary layer diffusion scheme into the NCEP Medium-Range Forecast Model is described. A boundary layer diffusion package based on the Troen and Mahrt nonlocal diffusion concept has been tested for possible operational implementation. The results from this approach are compared with those from the local diffusion approach, which is the current operational scheme, and verified against FIFE observations during 9?10 August 1987. The comparisons between local and nonlocal approaches are extended to the forecast for a heavy rain case of 15?17 May 1995. The sensitivity of both the boundary layer development and the precipitation forecast to the tuning parameters in the nonlocal diffusion scheme is also investigated. Special attention is given to the interaction of boundary layer processes with precipitation physics. Some results of parallel runs during August 1995 are also presented.}, Annote = {doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2}, Author = {Hong, Song-You and Pan, Hua-Lu}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAE18FggxOTk2LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATXvY0pRb8QAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAESG9uZwAQAAgAANHneLIAAAARAAgAANKUvmEAAAABABgATXwWAChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEhvbmc6ADE5OTYucGRmAA4AEgAIADEAOQA5ADYALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Booktitle = {Monthly Weather Review}, Da = {1996/10/01}, Date = {1996/10/01}, @@ -2638,13 +2637,13 @@ @article{hong_and_pan_1996 Volume = {124}, Year = {1996}, Year1 = {1996}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAE18FggxOTk2LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATXvY0pRb8QAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAESG9uZwAQAAgAANHneLIAAAARAAgAANKUvmEAAAABABgATXwWAChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEhvbmc6ADE5OTYucGRmAA4AEgAIADEAOQA5ADYALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0493(1996)124%3C2322:NBLVDI%3E2.0.CO;2}} @article{han_and_pan_2006, Abstract = {Abstract A parameterization of the convection-induced pressure gradient force (PGF) in convective momentum transport (CMT) is tested for hurricane intensity forecasting using NCEP's operational Global Forecast System (GFS) and its nested Regional Spectral Model (RSM). In the parameterization the PGF is assumed to be proportional to the product of the cloud mass flux and vertical wind shear. Compared to control forecasts using the present operational GFS and RSM where the PGF effect in CMT is taken into account empirically, the new PGF parameterization helps increase hurricane intensity by reducing the vertical momentum exchange, giving rise to a closer comparison to the observations. In addition, the new PGF parameterization forecasts not only show more realistically organized precipitation patterns with enhanced hurricane intensity but also reduce the forecast track error. Nevertheless, the model forecasts with the new PGF parameterization still largely underpredict the observed intensity. One of the many possible reasons for the large underprediction may be the absence of hurricane initialization in the models.}, Annote = {doi: 10.1175/MWR3090.1}, Author = {Han, Jongil and Pan, Hua-Lu}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMDYucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMDYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABazFjStCvVAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0rSORQAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDA2LnBkZgAADgASAAgAMgAwADAANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAwNi5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Booktitle = {Monthly Weather Review}, Da = {2006/02/01}, Date-Added = {2016-05-20 17:11:17 +0000}, @@ -2663,11 +2662,11 @@ @article{han_and_pan_2006 Url = {http://dx.doi.org/10.1175/MWR3090.1}, Volume = {134}, Year = {2006}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMDYucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMDYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABazFjStCvVAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0rSORQAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDA2LnBkZgAADgASAAgAMgAwADAANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAwNi5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/MWR3090.1}} @article{businger_et_al_1971, Author = {Businger, JA and Wyngaard, JC and Izumi, Y and Bradley, EF}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAodUUIMTk3MS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACh1cbTPIxwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJ1c2luZ2VyABAACAAA0ed4sgAAABEACAAAtM+FjAAAAAEAGAAodUUAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQnVzaW5nZXI6ADE5NzEucGRmAA4AEgAIADEAOQA3ADEALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Date-Added = {2016-05-20 17:10:50 +0000}, Date-Modified = {2018-07-18 18:58:08 +0000}, Isi = {A1971I822800004}, @@ -2680,6 +2679,7 @@ @article{businger_et_al_1971 Title = {Flux-profile relationships in the atmospheric surface layer}, Volume = {28}, Year = {1971}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAodUUIMTk3MS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACh1cbTPIxwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJ1c2luZ2VyABAACAAA0ed4sgAAABEACAAAtM+FjAAAAAEAGAAodUUAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQnVzaW5nZXI6ADE5NzEucGRmAA4AEgAIADEAOQA3ADEALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/A1971I822800004}} @article{xu_and_randall_1996, @@ -2870,18 +2870,17 @@ @article{kim_and_arakawa_1995 @techreport{hou_et_al_2002, Author = {Y. Hou and S. Moorthi and K. Campana}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAiLi4vLi4vemhhbmctbGliL2hvdV9ldF9hbF8yMDAyLnBkZk8RAdwAAAAAAdwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM/T1mZIKwAAAFKkjRJob3VfZXRfYWxfMjAwMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqai02OGCgAAAAAAAAAAAAIAAgAACSAAAAAAAAAAAAAAAAAAAAAJemhhbmctbGliAAAQAAgAAM/UKsYAAAARAAgAANNj2moAAAABABgAUqSNAE1lSgAj19QACTbFAAk2xAACZvkAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBtYW56aGFuZzoARG9jdW1lbnRzOgBNYW4uWmhhbmc6AGdtdGItZG9jOgB6aGFuZy1saWI6AGhvdV9ldF9hbF8yMDAyLnBkZgAADgAmABIAaABvAHUAXwBlAHQAXwBhAGwAXwAyADAAMAAyAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBIVXNlcnMvbWFuemhhbmcvRG9jdW1lbnRzL01hbi5aaGFuZy9nbXRiLWRvYy96aGFuZy1saWIvaG91X2V0X2FsXzIwMDIucGRmABMAAS8AABUAAgAP//8AAAAIAA0AGgAkAEkAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACKQ==}, Date-Added = {2016-05-19 19:52:22 +0000}, Date-Modified = {2016-05-20 15:14:59 +0000}, Institution = {NCEP}, Number = {441}, Title = {Parameterization of Solar Radiation Transfer}, Type = {office note}, - Year = {2002}} + Year = {2002}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAiLi4vLi4vemhhbmctbGliL2hvdV9ldF9hbF8yMDAyLnBkZk8RAdwAAAAAAdwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM/T1mZIKwAAAFKkjRJob3VfZXRfYWxfMjAwMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqai02OGCgAAAAAAAAAAAAIAAgAACSAAAAAAAAAAAAAAAAAAAAAJemhhbmctbGliAAAQAAgAAM/UKsYAAAARAAgAANNj2moAAAABABgAUqSNAE1lSgAj19QACTbFAAk2xAACZvkAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBtYW56aGFuZzoARG9jdW1lbnRzOgBNYW4uWmhhbmc6AGdtdGItZG9jOgB6aGFuZy1saWI6AGhvdV9ldF9hbF8yMDAyLnBkZgAADgAmABIAaABvAHUAXwBlAHQAXwBhAGwAXwAyADAAMAAyAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBIVXNlcnMvbWFuemhhbmcvRG9jdW1lbnRzL01hbi5aaGFuZy9nbXRiLWRvYy96aGFuZy1saWIvaG91X2V0X2FsXzIwMDIucGRmABMAAS8AABUAAgAP//8AAAAIAA0AGgAkAEkAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACKQ==}} @article{hu_and_stamnes_1993, Author = {Y.X. Hu and K. Stamnes}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAnLi4vLi4vemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmTxEB8AAAAAAB8AACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAz9PWZkgrAAAAUqSNF2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSpJHTY3R+AAAAAAAAAAAAAgACAAAJIAAAAAAAAAAAAAAAAAAAAAl6aGFuZy1saWIAABAACAAAz9QqxgAAABEACAAA02PI3gAAAAEAGABSpI0ATWVKACPX1AAJNsUACTbEAAJm+QACAGBNYWNpbnRvc2ggSEQ6VXNlcnM6AG1hbnpoYW5nOgBEb2N1bWVudHM6AE1hbi5aaGFuZzoAZ210Yi1kb2M6AHpoYW5nLWxpYjoAaHVfYW5kX3N0YW1uZXNfMTk5My5wZGYADgAwABcAaAB1AF8AYQBuAGQAXwBzAHQAYQBtAG4AZQBzAF8AMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIATVVzZXJzL21hbnpoYW5nL0RvY3VtZW50cy9NYW4uWmhhbmcvZ210Yi1kb2MvemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAATAAEvAAAVAAIAD///AAAACAANABoAJABOAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAkI=}, Date-Added = {2016-05-19 19:31:56 +0000}, Date-Modified = {2016-05-20 15:13:12 +0000}, Journal = {J. Climate}, @@ -2889,7 +2888,8 @@ @article{hu_and_stamnes_1993 Pages = {728-742}, Title = {An accurate parameterization of the radiative properties of water clouds suitable for use in climate models}, Volume = {6}, - Year = {1993}} + Year = {1993}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAnLi4vLi4vemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmTxEB8AAAAAAB8AACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAz9PWZkgrAAAAUqSNF2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSpJHTY3R+AAAAAAAAAAAAAgACAAAJIAAAAAAAAAAAAAAAAAAAAAl6aGFuZy1saWIAABAACAAAz9QqxgAAABEACAAA02PI3gAAAAEAGABSpI0ATWVKACPX1AAJNsUACTbEAAJm+QACAGBNYWNpbnRvc2ggSEQ6VXNlcnM6AG1hbnpoYW5nOgBEb2N1bWVudHM6AE1hbi5aaGFuZzoAZ210Yi1kb2M6AHpoYW5nLWxpYjoAaHVfYW5kX3N0YW1uZXNfMTk5My5wZGYADgAwABcAaAB1AF8AYQBuAGQAXwBzAHQAYQBtAG4AZQBzAF8AMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIATVVzZXJzL21hbnpoYW5nL0RvY3VtZW50cy9NYW4uWmhhbmcvZ210Yi1kb2MvemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAATAAEvAAAVAAIAD///AAAACAANABoAJABOAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAkI=}} @article{alexander_et_al_2010, Author = {Alexander, M. J. and Geller, M. and McLandress, C. and Polavarapu, S. and Preusse, P. and Sassi, F. and Sato, K. and Eckermann, S. and Ern, M. and Hertzog, A. and Kawatani, Y. and Pulido, M. and Shaw, T. A. and Sigmond, M. and Vincent, R. and Watanabe, S.}, diff --git a/physics/docs/pdftxt/GFS_OCEAN.txt b/physics/docs/pdftxt/GFS_OCEAN.txt new file mode 100644 index 000000000..813adf71c --- /dev/null +++ b/physics/docs/pdftxt/GFS_OCEAN.txt @@ -0,0 +1,16 @@ +/** +\page GFS_OCEAN GFS Simple Ocean Scheme +\section des_sfcocean Description + +The Sea Surface Temperature (SST) is a required filed in Numerical Weather Prediciton (NWP) systems because it +functions as the lower foundary condition for the calculation of air-sea heat fluxes. When the GFS Simple Ocean +Scheme is evoked, the SST is kept constant throughout the forecast. + +\section intra_sfcocean Intraphysics Communication +\ref arg_table_sfc_ocean_run + + + + + +*/ diff --git a/physics/docs/pdftxt/GFSv15p2_no_nsst_suite.txt b/physics/docs/pdftxt/GFSv15p2_no_nsst_suite.txt new file mode 100644 index 000000000..982afc860 --- /dev/null +++ b/physics/docs/pdftxt/GFSv15p2_no_nsst_suite.txt @@ -0,0 +1,127 @@ +/** +\page GFS_v15p2_no_nsst_page GFS_v15p2_no_nsst Suite + +\section gfsv15_no_nsst_suite_overview Overview + +Suite GFS_v15p2_no_nsst is a companion suite of GFS_v15p2 with GRIB2 data initialization. + +The GFS_v15p2_no_nsst physics suite uses the parameterizations in the following order: + - \ref GFS_RRTMG + - \ref GFS_SFCLYR + - \ref GFS_OCEAN + - \ref GFS_NOAH + - \ref GFS_SFCSICE + - \ref GFS_HEDMF + - \ref GFS_UGWP_v0 + - \ref GFS_RAYLEIGH + - \ref GFS_OZPHYS + - \ref GFS_H2OPHYS + - \ref GFS_SAMFdeep + - \ref GFS_SAMFshal + - \ref GFDL_cloud + - \ref GFS_CALPRECIPTYPE + +\section sdf_gfsv15p2_no_nsst Suite Definition File +- For GRIB2 initialization data: \subpage suite_FV3_GFS_v15p2_no_nsst_xml + +\section gfs15p2nonsst_nml_opt_des Namelist + +- \b &gfs_physics_nml +\n \c fhzero = 6 +\n \c h2o_phys = .true. +\n \c ldiag3d = .false. +\n \c fhcyc = 24 +\n \c use_ufo = .true. +\n \c pre_rad = .false. +\n \c ncld = 5 +\n \c imp_physics = 11 +\n \c pdfcld = .false. +\n \c fhswr = 3600. +\n \c fhlwr = 3600. +\n \c ialb = 1 +\n \c iems = 1 +\n \c iaer = 111 +\n \c ico2 = 2 +\n \c isubc_sw = 2 +\n \c isubc_lw = 2 +\n \c isol = 2 +\n \c lwhtr = .true. +\n \c swhtr = .true. +\n \c cnvgwd = .true. +\n \c shal_cnv = .true. +\n \c cal_pre = .false. +\n \c redrag = .true. +\n \c dspheat = .true. +\n \c hybedmf = .true. +\n \c random_clds = .false. +\n \c trans_trac = .true. +\n \c cnvcld = .true. +\n \c imfshalcnv = 2 +\n \c imfdeepcnv = 2 +\n \c cdmbgwd = 3.5,0.25 [1.0,1.2] [0.2,2.5] [0.125,3.0] ! [C768] [C384] [C192] [C96]L64 +\n \c prslrd0 = 0. +\n \c ivegsrc = 1 +\n \c isot = 1 +\n \c debug = .false. +\n \c oz_phys = .F. +\n \c oz_phys_2015 = .T. +\n \c nstf_name = 0,0,0,0,0 +\n \c nst_anl = .true. +\n \c psautco = 0.0008,0.0005 +\n \c prautco = 0.00015,0.00015 +\n \c lgfdlmprad = .true. +\n \c effr_in = .true. +\n \c do_sppt = .false. +\n \c do_shum = .false. +\n \c do_skeb = .false. +\n \c do_sfcperts = .false. + +- \b &gfdl_cloud_microphysics_nml +\n \c sedi_transport = .true. +\n \c do_sedi_heat = .false. +\n \c rad_snow = .true. +\n \c rad_graupel = .true. +\n \c rad_rain = .true. +\n \c const_vi = .F. +\n \c const_vs = .F. +\n \c const_vg = .F. +\n \c const_vr = .F. +\n \c vi_max = 1. +\n \c vs_max = 2. +\n \c vg_max = 12. +\n \c vr_max = 12. +\n \c qi_lim = 1. +\n \c prog_ccn = .false. +\n \c do_qa = .true. +\n \c fast_sat_adj = .true. +\n \c tau_l2v = 225. +\n \c tau_v2l = 150. +\n \c tau_g2v = 900. +\n \c rthresh = 10.e-6 +\n \c dw_land = 0.16 +\n \c dw_ocean = 0.10 +\n \c ql_gen = 1.0e-3 +\n \c ql_mlt = 1.0e-3 +\n \c qi0_crt = 8.0E-5 +\n \c qs0_crt = 1.0e-3 +\n \c tau_i2s = 1000. +\n \c c_psaci = 0.05 +\n \c c_pgacs = 0.01 +\n \c rh_inc = 0.30 +\n \c rh_inr = 0.30 +\n \c rh_ins = 0.30 +\n \c ccn_l = 300. +\n \c ccn_o = 100. +\n \c c_paut = 0.5 +\n \c c_cracw = 0.8 +\n \c use_ppm = .false. +\n \c use_ccn = .true. +\n \c mono_prof = .true. +\n \c z_slope_liq = .true. +\n \c z_slope_ice = .true. +\n \c de_ice = .false. +\n \c fix_negative = .true. +\n \c icloud_f = 1 +\n \c mp_time = 150. + +*/ diff --git a/physics/docs/pdftxt/GFSv15p2_suite.txt b/physics/docs/pdftxt/GFSv15p2_suite.txt index 7d9f9d348..944fd49f1 100644 --- a/physics/docs/pdftxt/GFSv15p2_suite.txt +++ b/physics/docs/pdftxt/GFSv15p2_suite.txt @@ -10,6 +10,7 @@ The GFS_v15p2 physics suite uses the parameterizations in the following order: - \ref GFS_RRTMG - \ref GFS_SFCLYR - \ref GFS_NSST + - \ref GFS_OCEAN - \ref GFS_NOAH - \ref GFS_SFCSICE - \ref GFS_HEDMF @@ -23,8 +24,7 @@ The GFS_v15p2 physics suite uses the parameterizations in the following order: - \ref GFS_CALPRECIPTYPE \section sdf_gfsv15p2 Suite Definition File -- For NEMSIO initialization data: \ref suite_FV3_GFS_v15p2_xml -- For GRIB2 initialization data: \ref suite_FV3_GFS_v15p2_no_nsst_xml +- For NEMSIO initialization data: \subpage suite_FV3_GFS_v15p2_xml \section gfs15p2_nml_opt_des Namelist @@ -126,8 +126,8 @@ The GFS_v15p2 physics suite uses the parameterizations in the following order: \n \c icloud_f = 1 \n \c mp_time = 150. -\note nstf_name = \f$2,0,0,0,0[2,1,0,0,0]^1 [0,0,0,0,0]^2\f$ -- \f$^1\f$ This should be used when spinning up NSST fields in the absence of NSST data in initial conditions (see documentation for CHGRES) -- \f$^2\f$ This should be used when not using NSST at all (paired with \ref suite_FV3_GFS_v15p2_no_nsst_xml to turned off NSST option) +\note nstf_name = \f$[2,0,0,0,0]^1 [2,1,0,0,0]^2 \f$ +- \f$^1\f$ NSST is on and coupled with spin up off +- \f$^2\f$ NSST is on and coupled with spin up on */ diff --git a/physics/docs/pdftxt/GFSv16beta_no_nsst_suite.txt b/physics/docs/pdftxt/GFSv16beta_no_nsst_suite.txt new file mode 100644 index 000000000..3e5205199 --- /dev/null +++ b/physics/docs/pdftxt/GFSv16beta_no_nsst_suite.txt @@ -0,0 +1,167 @@ +/** +\page GFS_v16beta_no_nsst_page GFS_v16beta_no_nsst Suite + +\section gfsv16beta_no_nsst_suite_overview Overview + +Suite GFS_v16beta_no_nsst is a companion suite of GFS_v16beta with GRIB2 data initialization. + +The GFS_v16beta_no_nsst physics suite uses the parameterizations in the following order: + - \ref GFS_RRTMG + - \ref GFS_SFCLYR + - \ref GFS_OCEAN + - \ref GFS_NOAH + - \ref GFS_SFCSICE + - \ref GFS_SATMEDMFVDIFQ + - \ref GFS_UGWP_v0 + - \ref GFS_RAYLEIGH + - \ref GFS_OZPHYS + - \ref GFS_H2OPHYS + - \ref GFS_SAMFdeep + - \ref GFS_SAMFshal + - \ref GFDL_cloud + - \ref GFS_CALPRECIPTYPE + +\section sdf_gfsv16bnonsst Suite Definition File +- For GRIB2 initialization data: \subpage suite_FV3_GFS_v16beta_no_nsst_xml + +\section gfs16betanonsst_nml_opt_des Namelist + +- \b &gfs_physics_nml +\n \c fhzero = 6 +\n \c h2o_phys = .true. +\n \c ldiag3d = .false. +\n \c fhcyc = 24 +\n \c use_ufo = .true. +\n \c pre_rad = .false. +\n \c ncld = 5 +\n \c imp_physics = 11 +\n \c pdfcld = .false. +\n \c fhswr = 3600. +\n \c fhlwr = 3600. +\n \c ialb = 1 +\n \c iems = 1 +\n \c iaer = 5111 +\n \c icliq_sw = 2 +\n \c iovr_lw = 3 +\n \c iovr_sw = 3 +\n \c ico2 = 2 +\n \c isubc_sw = 2 +\n \c isubc_lw = 2 +\n \c isol = 2 +\n \c lwhtr = .true. +\n \c swhtr = .true. +\n \c cnvgwd = .true. +\n \c shal_cnv = .true. +\n \c cal_pre = .false. +\n \c redrag = .true. +\n \c dspheat = .true. +\n \c hybedmf = .false. +\n \c satmedmf = .true. +\n \c isatmedmf = 1 +\n \c lheatstrg = .true. +\n \c random_clds = .false. +\n \c trans_trac = .true. +\n \c cnvcld = .true. +\n \c imfshalcnv = 2 +\n \c imfdeepcnv = 2 +\n \c cdmbgwd = 4.0,0.15,1.0,1.0 [1.1,0.72,1.0,1.0] [0.23,1.5,1.0,1.0] [0.14,1.8,1.0,1.0] ! [C768] [C384] [C192] [C96]L64 +\n \c prslrd0 = 0. +\n \c ivegsrc = 1 +\n \c isot = 1 +\n \c lsoil = 4 +\n \c lsm = 1 +\n \c iopt_dveg = 1 +\n \c iopt_crs = 1 +\n \c iopt_btr = 1 +\n \c iopt_run = 1 +\n \c iopt_sfc = 1 +\n \c iopt_frz = 1 +\n \c iopt_inf = 1 +\n \c iopt_rad = 1 +\n \c iopt_alb = 2 +\n \c iopt_snf = 4 +\n \c iopt_tbot = 2 +\n \c iopt_stc = 1 +\n \c debug = .false. +\n \c oz_phys = .F. +\n \c oz_phys_2015 = .T. +\n \c nstf_name = 0,0,0,0,0 +\n \c nst_anl = .true. +\n \c psautco = 0.0008,0.0005 +\n \c prautco = 0.00015,0.00015 +\n \c lgfdlmprad = .true. +\n \c effr_in = .true. +\n \c ldiag_ugwp = .false. +\n \c do_ugwp = .false. +\n \c do_tofd = .true. +\n \c do_sppt = .false. +\n \c do_shum = .false. +\n \c do_skeb = .false. +\n \c do_sfcperts = .false. + + +- \b &gfdl_cloud_microphysics_nml +\n \c sedi_transport = .true. +\n \c do_sedi_heat = .false. +\n \c rad_snow = .true. +\n \c rad_graupel = .true. +\n \c rad_rain = .true. +\n \c const_vi = .F. +\n \c const_vs = .F. +\n \c const_vg = .F. +\n \c const_vr = .F. +\n \c vi_max = 1. +\n \c vs_max = 2. +\n \c vg_max = 12. +\n \c vr_max = 12. +\n \c qi_lim = 1. +\n \c prog_ccn = .false. +\n \c do_qa = .true. +\n \c fast_sat_adj = .true. +\n \c tau_l2v = 225. +\n \c tau_v2l = 150. +\n \c tau_g2v = 900. +\n \c rthresh = 10.e-6 +\n \c dw_land = 0.16 +\n \c dw_ocean = 0.10 +\n \c ql_gen = 1.0e-3 +\n \c ql_mlt = 1.0e-3 +\n \c qi0_crt = 8.0E-5 +\n \c qs0_crt = 1.0e-3 +\n \c tau_i2s = 1000. +\n \c c_psaci = 0.05 +\n \c c_pgacs = 0.01 +\n \c rh_inc = 0.30 +\n \c rh_inr = 0.30 +\n \c rh_ins = 0.30 +\n \c ccn_l = 300. +\n \c ccn_o = 100. +\n \c c_paut = 0.5 +\n \c c_cracw = 0.8 +\n \c use_ppm = .false. +\n \c use_ccn = .true. +\n \c mono_prof = .true. +\n \c z_slope_liq = .true. +\n \c z_slope_ice = .true. +\n \c de_ice = .false. +\n \c fix_negative = .true. +\n \c icloud_f = 1 +\n \c mp_time = 150. +\n \c reiflag = 2 + + +- \b &cires_ugwp_nml +\n \c knob_ugwp_solver = 2 +\n \c knob_ugwp_source = 1,1,0,0 +\n \c knob_ugwp_wvspec = 1,25,25,25 +\n \c knob_ugwp_azdir = 2,4,4,4 +\n \c knob_ugwp_stoch = 0,0,0,0 +\n \c knob_ugwp_effac = 1,1,1,1 +\n \c knob_ugwp_doaxyz = 1 +\n \c knob_ugwp_doheat = 1 +\n \c knob_ugwp_dokdis = 1 +\n \c knob_ugwp_ndx4lh = 1 +\n \c knob_ugwp_version = 0 +\n \c launch_level = 27 + +*/ diff --git a/physics/docs/pdftxt/GFSv16beta_suite.txt b/physics/docs/pdftxt/GFSv16beta_suite.txt index abba846f1..8389d0c40 100644 --- a/physics/docs/pdftxt/GFSv16beta_suite.txt +++ b/physics/docs/pdftxt/GFSv16beta_suite.txt @@ -13,6 +13,7 @@ The GFS_v16beta physics suite uses the parameterizations in the following order: - \ref GFS_RRTMG - \ref GFS_SFCLYR - \ref GFS_NSST + - \ref GFS_OCEAN - \ref GFS_NOAH - \ref GFS_SFCSICE - \ref GFS_SATMEDMFVDIFQ @@ -26,8 +27,7 @@ The GFS_v16beta physics suite uses the parameterizations in the following order: - \ref GFS_CALPRECIPTYPE \section sdf_gfsv16b Suite Definition File -- For NEMSIO initialization data: \ref suite_FV3_GFS_v16beta_xml -- For GRIB2 initialization data: \ref suite_FV3_GFS_v16beta_no_nsst_xml +- For NEMSIO initialization data: \subpage suite_FV3_GFS_v16beta_xml \section gfs16beta_nml_opt_des Namelist @@ -169,8 +169,8 @@ The GFS_v16beta physics suite uses the parameterizations in the following order: \n \c knob_ugwp_version = 0 \n \c launch_level = 27 -\note nstf_name = \f$2,0,0,0,0[2,1,0,0,0]^1 [0,0,0,0,0]^2\f$ -- \f$^1\f$ This should be used when spinning up NSST fields in the absence of NSST data in initial conditions (see documentation for CHGRES) -- \f$^2\f$ This should be used when not using NSST at all (paired with \ref suite_FV3_GFS_v16beta_no_nsst_xml to turned off NSST option) +\note nstf_name = \f$[2,0,0,0,0]^1 [2,1,0,0,0]^2\f$ +- \f$^1\f$ NSST is on and coupled with spin up off +- \f$^2\f$ NSST is on and coupled with spin up on */ diff --git a/physics/docs/pdftxt/all_shemes_list.txt b/physics/docs/pdftxt/all_shemes_list.txt index 7e5e3298e..b85acff37 100644 --- a/physics/docs/pdftxt/all_shemes_list.txt +++ b/physics/docs/pdftxt/all_shemes_list.txt @@ -51,6 +51,7 @@ parameterizations in suites. - \b Surface \b Layer \b and \b Simplified \b Ocean \b and \b Sea \b Ice \b Representation - \subpage GFS_SFCLYR - \subpage GFS_NSST + - \subpage GFS_OCEAN - \subpage GFS_SFCSICE - \b Others diff --git a/physics/docs/pdftxt/mainpage.txt b/physics/docs/pdftxt/mainpage.txt index 2ac121f3c..bdac1ef17 100644 --- a/physics/docs/pdftxt/mainpage.txt +++ b/physics/docs/pdftxt/mainpage.txt @@ -7,16 +7,19 @@ Community Physics Package (CCPP) v3.0 public release. The CCPP-Physics is envisioned to contain parameterizations used by NOAA operational models for weather through seasonal prediction timescales, as well as developmental schemes under consideration for upcoming operational implementations. This version contains all parameterizations of the current operational GFS, -plus additional developmental schemes. The CCPP can currently be used with the Single Column Model (SCM) developed -by the Global Model Test Bed (GMTB) of the Developmental Testbed Center, as well as with the atmospheric component -of NOAA's Unified Forecast System (UFS-Atmosphere), which employs the the non-hydrostatic -Finite-Volume Cubed-Sphere (FV3) dynamic core. +plus additional developmental schemes. There are four suites supported for use with the Single Column Model (SCM) +developed by the Development Testbed Center (GFS_v15p2, GFS_v16beta, GSD_v1, and csawmg), and four suites +supported for use with the atmospheric component of the UFS (i.e., GFS_v15p2, GFS_v15p2_no_nsst, GFS_v16beta and +GFS_v16beta_no_nsst). The variants labelled as \a no_nsst are a simplification that uses constant sea surface +temperature (SST). This simplification is needed when the UFS is initialized with files in GRIdded Binary Edition 2 (GRIB2) +format instead of files in NOAA Environmental Modeling System (NEMS) Input/Output (NEMSIO) format because the +fields necessary to predict (SST) are not available in the GRIB2 files. In this website you will find documentation on various aspects of each parameterization, including a high-level overview of its function, the input/output argument list, and a description of the algorithm. -The latest CCPP public release is Version 3.0 (June 2019), and more details on it may be found on the - CCPP website hosted by the Global Model Test -Bed (GMTB) of the Developmental Testbed Center (DTC). +The latest CCPP public release is Version 4.0 (March 2020), and more details on it may be found on the + CCPP website hosted by +the Developmental Testbed Center (DTC). */ diff --git a/physics/docs/pdftxt/suite_input.nml.txt b/physics/docs/pdftxt/suite_input.nml.txt index 688eb5d07..4f7ddaae8 100644 --- a/physics/docs/pdftxt/suite_input.nml.txt +++ b/physics/docs/pdftxt/suite_input.nml.txt @@ -221,14 +221,14 @@ and how stochastic perturbations are used in the Noah Land Surface Model. debug gfs_control_type flag for debug printout .false. nstf_name(5) gfs_control_type NSST related paramters:\n
    -
  • nstf_name(1): 0=NSSTM off, 1= NSSTM on but uncoupled, 2= NSSTM on and coupled -
  • nstf_name(2): 1=NSSTM spin up on, 0=NSSTM spin up off -
  • nstf_name(3): 1=NSST analysis on, 0=NSSTM analysis off +
  • nstf_name(1): 0=NSST off, 1= NSST on but uncoupled, 2= NSST on and coupled +
  • nstf_name(2): 1=NSST spin up on, 0=NSST spin up off +
  • nstf_name(3): 1=NSST analysis on, 0=NSST analysis off
  • nstf_name(4): zsea1 in mm
  • nstf_name(5): zesa2 in mm
/0,0,1,0,5/ -nst_anl gfs_control_type flag for NSSTM analysis in gcycle/sfcsub .false. +nst_anl gfs_control_type flag for NSST analysis in gcycle/sfcsub .false. effr_in gfs_control_type logical flag for using input cloud effective radii calculation .false. aero_in gfs_control_type logical flag for using aerosols in Morrison-Gettelman microphysics .false. iau_delthrs gfs_control_type incremental analysis update (IAU) time interval in hours 6 diff --git a/physics/sfc_ocean.F b/physics/sfc_ocean.F index 508fb3b67..e21ddb3a7 100644 --- a/physics/sfc_ocean.F +++ b/physics/sfc_ocean.F @@ -21,14 +21,12 @@ end subroutine sfc_ocean_init subroutine sfc_ocean_finalize() end subroutine sfc_ocean_finalize -!>\defgroup gfs_ocean_main GFS Ocean scheme Module +!>\defgroup gfs_ocean_main GFS Simple Ocean Scheme Module !! This subroutine calculates thermodynamical properties over !! open water. -#if 0 !! \section arg_table_sfc_ocean_run Argument Table !! \htmlinclude sfc_ocean_run.html !! -#endif subroutine sfc_ocean_run & & ( im, cp, rd, eps, epsm1, hvap, rvrdm1, ps, t1, q1, & ! --- inputs & tskin, cm, ch, prsl1, prslki, wet, wind, & From e63c34fb94ae161a73bd0793aefcc68546f19e38 Mon Sep 17 00:00:00 2001 From: mzhangw Date: Mon, 2 Mar 2020 15:46:27 -0700 Subject: [PATCH 03/14] CCPP V4.0 scidoc update (#402) * scientific documentation update for UFS public release, add two additional xml files for GFSv15p2 and GFSv16beta * add two new suites: GFSv15p2_no_nsst and GFSv16beta_no_nsst and GFS ocean scientific documentation --- physics/cires_ugwp.F90 | 2 -- 1 file changed, 2 deletions(-) diff --git a/physics/cires_ugwp.F90 b/physics/cires_ugwp.F90 index 89cea0595..504b24a77 100644 --- a/physics/cires_ugwp.F90 +++ b/physics/cires_ugwp.F90 @@ -145,7 +145,6 @@ end subroutine cires_ugwp_finalize !> \section arg_table_cires_ugwp_run Argument Table !! \htmlinclude cires_ugwp_run.html !! - !> \section gen_cires_ugwp CIRES UGWP Scheme General Algorithm !! @{ subroutine cires_ugwp_run(do_ugwp, me, master, im, levs, ntrac, dtp, kdt, lonr, & @@ -367,7 +366,6 @@ subroutine cires_ugwp_run(do_ugwp, me, master, im, levs, ntrac, dtp, kdt, lonr gw_dudt = gw_dudt*(1.-pked) + ed_dudt*pked end subroutine cires_ugwp_run - !! @} !>@} end module cires_ugwp From ab540e5a532b5a891382e39dc21f1105d8f53e57 Mon Sep 17 00:00:00 2001 From: Man Zhang Date: Mon, 9 Mar 2020 15:04:58 -0600 Subject: [PATCH 04/14] add no_nsst suites in all_schemes page per ligia email --- physics/docs/pdftxt/all_shemes_list.txt | 31 ++++++++++++++++--------- physics/docs/pdftxt/mainpage.txt | 4 ++-- 2 files changed, 22 insertions(+), 13 deletions(-) diff --git a/physics/docs/pdftxt/all_shemes_list.txt b/physics/docs/pdftxt/all_shemes_list.txt index b85acff37..c1f3bf1d8 100644 --- a/physics/docs/pdftxt/all_shemes_list.txt +++ b/physics/docs/pdftxt/all_shemes_list.txt @@ -83,25 +83,34 @@ to the parameterization. \section allsuite_overview Physics Suites -The CCPP v3 includes the suite used in the GFS v15 implemented operationally in June 2019 (suite GFS_v15). Additionally, it includes three -developmental suites which are undergoing testing for possible future implementation in the UFS. Suite GFS_v15plus is identical to suite -GFS_v15 except for a replacement in the PBL parameterization (Han et al. 2019 \cite Han_2019 ). Suite csawmg differs from GFS_v15 as it +The CCPP includes the suite GFS_v15p2, which has the same parameterizations used in the GFS v15 implemented operationally in June 2019, and suite +GFS_v16beta, i.e., the beta version of the suite planned for GFS v16 to be implemented operationally in 2021. Suite GFS_v16beta is identical to +Suite GFS_v15p2 except for an update in the PBL parameterization (Han et al. 2019 \cite Han_2019 ) and RRTMG. Additionally, CCPP v4 includes two +developmental suites which are undergoing testing to inform future implementations of the UFS. Suite csawmg differs from GFS_v15p2 as it contains different convection and microphysics schemes made available through a NOAA Climate Process Team (CPT) with components developed at multiple research centers and universities, including Colorado State, Utah, NASA, NCAR, and EMC. Suite GSD_v0 differs from GFS_v15 as it uses the convection, microphysics, and boundary layer schemes employed in the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR \cite Benjamin_2016 ) operational models and was assembled by NOAA/GSD. An assessment of an earlier version of these suites can be found in the UFS portal -and in the GMTB website . +and in the DTC website . Two variant suites labelled as \a no_nsst are simplification of GFS_v15p2 and GFS_v16beta. +This simplification is needed when the UFS is initialized with files in GRIdded Binary Edition 2 (GRIB2) format instead of files in NOAA Environmental Modeling +System (NEMS) Input/Output (NEMSIO) format because the fields necesary to predict (SST) are not available in the GRIB2 files. Table 1. Physics suite options included in this documentation. \tableofcontents -| Phys suites | GFS_v15 | GFS_v15plus | csawmg | GSD_v0 | -|------------------|----------------------|----------------------|---------------------|----------------------| -| Deep Cu | \ref GFS_SAMFdeep | \ref GFS_SAMFdeep | \ref CSAW_scheme | \ref GSD_CU_GF | -| Shallow Cu | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref GSD_MYNNEDMF and \ref cu_gf_sh_group | -| Microphysics | \ref GFDL_cloud | \ref GFDL_cloud | \ref CPT_MG3 | \ref GSD_THOMPSON | -| PBL/TURB | \ref GFS_HEDMF | \ref GFS_SATMEDMF | \ref GFS_HEDMF | \ref GSD_MYNNEDMF | -| Land | \ref GFS_NOAH | \ref GFS_NOAH | \ref GFS_NOAH | \ref GSD_RUCLSM | +| Physics suites | GFS_v15p2 | GFS_v16beta | csawmg | GSD_v1 | GFS_v15p2_no_nsst | GFS_v16beta_no_nsst | +|------------------|----------------------|--------------------------|---------------------|---------------------------------------------|-------------------------|---------------------------| +| Deep Cu | \ref GFS_SAMFdeep | \ref GFS_SAMFdeep | \ref CSAW_scheme | \ref GSD_CU_GF | \ref GFS_SAMFdeep | \ref GFS_SAMFdeep | +| Shallow Cu | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref GSD_MYNNEDMF and \ref cu_gf_sh_group | \ref GFS_SAMFshal | \ref GFS_SAMFshal | +| Microphysics | \ref GFDL_cloud | \ref GFDL_cloud | \ref CPT_MG3 | \ref GSD_THOMPSON | \ref GFDL_cloud | \ref GFDL_cloud | +| PBL/TURB | \ref GFS_HEDMF | \ref GFS_SATMEDMFVDIFQ | \ref GFS_HEDMF | \ref GSD_MYNNEDMF | \ref GFS_HEDMF | \ref GFS_SATMEDMFVDIFQ | +| Radiation | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | +| Surface Layer | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | +| Land | \ref GFS_NOAH | \ref GFS_NOAH | \ref GFS_NOAH | \ref GSD_RUCLSM | \ref GFS_NOAH | \ref GFS_NOAH | +| Gravity Wave Drag| \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | +| Ocean | \ref GFS_NSST | \ref GFS_NSST | \ref GFS_NSST | \ref GFS_NSST | \ref GFS_OCEAN | \ref GFS_OCEAN | +| Ozone | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | +| Water Vapor | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \tableofcontents diff --git a/physics/docs/pdftxt/mainpage.txt b/physics/docs/pdftxt/mainpage.txt index bdac1ef17..a670441f5 100644 --- a/physics/docs/pdftxt/mainpage.txt +++ b/physics/docs/pdftxt/mainpage.txt @@ -10,8 +10,8 @@ operational implementations. This version contains all parameterizations of the plus additional developmental schemes. There are four suites supported for use with the Single Column Model (SCM) developed by the Development Testbed Center (GFS_v15p2, GFS_v16beta, GSD_v1, and csawmg), and four suites supported for use with the atmospheric component of the UFS (i.e., GFS_v15p2, GFS_v15p2_no_nsst, GFS_v16beta and -GFS_v16beta_no_nsst). The variants labelled as \a no_nsst are a simplification that uses constant sea surface -temperature (SST). This simplification is needed when the UFS is initialized with files in GRIdded Binary Edition 2 (GRIB2) +GFS_v16beta_no_nsst). The variants labelled as \a no_nsst are simplification of GFS_v15p2 and GFS_v16beta +. This simplification is needed when the UFS is initialized with files in GRIdded Binary Edition 2 (GRIB2) format instead of files in NOAA Environmental Modeling System (NEMS) Input/Output (NEMSIO) format because the fields necessary to predict (SST) are not available in the GRIB2 files. From 01a91cba31543aad261f6d75c700cac9a1e3bae9 Mon Sep 17 00:00:00 2001 From: "Man.Zhang" Date: Fri, 27 Mar 2020 11:52:29 -0600 Subject: [PATCH 05/14] update ocean scheme description per Ligias request --- physics/docs/pdftxt/GFS_OCEAN.txt | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/physics/docs/pdftxt/GFS_OCEAN.txt b/physics/docs/pdftxt/GFS_OCEAN.txt index 813adf71c..b384aec84 100644 --- a/physics/docs/pdftxt/GFS_OCEAN.txt +++ b/physics/docs/pdftxt/GFS_OCEAN.txt @@ -2,9 +2,10 @@ \page GFS_OCEAN GFS Simple Ocean Scheme \section des_sfcocean Description -The Sea Surface Temperature (SST) is a required filed in Numerical Weather Prediciton (NWP) systems because it -functions as the lower foundary condition for the calculation of air-sea heat fluxes. When the GFS Simple Ocean -Scheme is evoked, the SST is kept constant throughout the forecast. +The Sea Surface Temperature (SST) is a required field in Numerical Weather Prediciton (NWP) systems because it +functions as the lower boundary condition for the calculation of air-sea heat fluxes. The GFS Simple Ocean Scheme +does not change the SST. Therefore, the SST stays constant throughout the forecast unless it is updated by other processes. +In some models, such as the UFS atmosphere, the SST can change if forcing towards the climatology is turned on. \section intra_sfcocean Intraphysics Communication \ref arg_table_sfc_ocean_run From 5a254ffb0aa2fd26df641d3963ee7d1fa38a0379 Mon Sep 17 00:00:00 2001 From: Man Zhang Date: Fri, 27 Mar 2020 14:52:16 -0600 Subject: [PATCH 06/14] fix doxygen compile warnings --- physics/docs/pdftxt/suite_input.nml.txt | 2 +- physics/m_micro.F90 | 9 --------- physics/mp_thompson.F90 | 4 ---- physics/sfc_drv_ruc.F90 | 2 -- 4 files changed, 1 insertion(+), 16 deletions(-) diff --git a/physics/docs/pdftxt/suite_input.nml.txt b/physics/docs/pdftxt/suite_input.nml.txt index 4f7ddaae8..95b77c22f 100644 --- a/physics/docs/pdftxt/suite_input.nml.txt +++ b/physics/docs/pdftxt/suite_input.nml.txt @@ -454,7 +454,7 @@ and how stochastic perturbations are used in the Noah Land Surface Model. icloud_f gfdl_cloud_microphys_mod flag (0,1,or 2) for cloud fraction diagnostic scheme 0 irain_f gfdl_cloud_microphys_mod flag (0 or 1) for cloud water autoconversion to rain scheme. 0: with subgrid variability; 1: no subgrid variability 0 mp_time gfdl_cloud_microphys_mod time step of GFDL cloud microphysics (MP). If \p mp_time isn't divisible by physics time step or is larger than physics time step, the actual MP time step becomes \p dt/NINT[dt/MIN(dt,mp_time)] 150. -alin gfdl_cloud_microphys_mod parameter \a a in Lin et al.(1983). Constant in empirical formula for \f$U_R\f$. Increasing(decreasing) \p alin can boost(decrease) accretion of cloud water by rain and rain evaporation 842. +alin gfdl_cloud_microphys_mod parameter \a a in Lin et al.(1983). Constant in empirical formula for \f$U_R\f$. Increasing(decreasing) \p alin can boost(decrease) accretion of cloud water by rain and rain evaporation 842. clin gfdl_cloud_microphys_mod parameter \a c in Lin et al.(1983). Constant in empirical formula for \f$U_S\f$. Increasing(decreasing) \p clin can boost(decrease) accretion of cloud water by snow, accretion of cloud ice by snow, snow sublimation and deposition, and snow melting 4.8 t_min gfdl_cloud_microphys_mod temperature threshold for instant deposition. Deposit all water vapor to cloud ice when temperature is lower than \p t_min 178. t_sub gfdl_cloud_microphys_mod temperature threshold for sublimation. Cloud ice, snow or graupel stops(starts) sublimation when temperature is lower(higher) then \p t_sub 184. diff --git a/physics/m_micro.F90 b/physics/m_micro.F90 index 83ff8d554..65adffab5 100644 --- a/physics/m_micro.F90 +++ b/physics/m_micro.F90 @@ -106,17 +106,8 @@ end subroutine m_micro_finalize !> \defgroup mg2mg3 Morrison-Gettelman MP scheme Module !! This module contains the the entity of MG2 and MG3 schemes. !> @{ -!> \defgroup mg_driver Morrison-Gettelman MP Driver Module -!! \brief This subroutine is the Morrison-Gettelman MP driver, which computes -!! grid-scale condensation and evaporation of cloud condensate. - -#if 0 - !> \section arg_table_m_micro_run Argument Table !! \htmlinclude m_micro_run.html -!! -#endif -!>\ingroup mg_driver !>\section detail_m_micro_run MG m_micro_run Detailed Algorithm !> @{ subroutine m_micro_run( im, ix, lm, flipv, dt_i & diff --git a/physics/mp_thompson.F90 b/physics/mp_thompson.F90 index 22b8124c1..e3b760738 100644 --- a/physics/mp_thompson.F90 +++ b/physics/mp_thompson.F90 @@ -21,11 +21,9 @@ module mp_thompson contains !> This subroutine is a wrapper around the actual mp_gt_driver(). -#if 0 !! \section arg_table_mp_thompson_init Argument Table !! \htmlinclude mp_thompson_init.html !! -#endif subroutine mp_thompson_init(ncol, nlev, is_aerosol_aware, & nwfa2d, nifa2d, nwfa, nifa, & mpicomm, mpirank, mpiroot, & @@ -129,11 +127,9 @@ subroutine mp_thompson_init(ncol, nlev, is_aerosol_aware, & end subroutine mp_thompson_init -#if 0 !> \section arg_table_mp_thompson_run Argument Table !! \htmlinclude mp_thompson_run.html !! -#endif !>\ingroup aathompson !>\section gen_thompson_hrrr Thompson MP General Algorithm !>@{ diff --git a/physics/sfc_drv_ruc.F90 b/physics/sfc_drv_ruc.F90 index 3b4b8a118..a7436cb8f 100644 --- a/physics/sfc_drv_ruc.F90 +++ b/physics/sfc_drv_ruc.F90 @@ -130,11 +130,9 @@ end subroutine lsm_ruc_finalize !> \defgroup lsm_ruc_group GSD RUC LSM Model !! This module contains the RUC Land Surface Model developed by NOAA/GSD !! (Smirnova et al. 2016 \cite Smirnova_2016). -#if 0 !> \section arg_table_lsm_ruc_run Argument Table !! \htmlinclude lsm_ruc_run.html !! -#endif !>\section gen_lsmruc GSD RUC LSM General Algorithm ! DH* TODO - make order of arguments the same as in the metadata table subroutine lsm_ruc_run & ! inputs From e9909192b9a81709562536b7d806b87dacbd23d8 Mon Sep 17 00:00:00 2001 From: "Man.Zhang" Date: Fri, 27 Mar 2020 15:15:53 -0600 Subject: [PATCH 07/14] fix m_micro prebuild error --- physics/m_micro.F90 | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/physics/m_micro.F90 b/physics/m_micro.F90 index 65adffab5..fceadce09 100644 --- a/physics/m_micro.F90 +++ b/physics/m_micro.F90 @@ -103,11 +103,13 @@ end subroutine m_micro_init subroutine m_micro_finalize end subroutine m_micro_finalize -!> \defgroup mg2mg3 Morrison-Gettelman MP scheme Module -!! This module contains the the entity of MG2 and MG3 schemes. -!> @{ +!> \defgroup mg_driver Morrison-Gettelman MP Driver Module +!! \brief This subroutine is the Morrison-Gettelman MP driver, which computes +!! grid-scale condensation and evaporation of cloud condensate. +!! !> \section arg_table_m_micro_run Argument Table -!! \htmlinclude m_micro_run.html +!> \htmlinclude m_micro_run.html +!! !>\section detail_m_micro_run MG m_micro_run Detailed Algorithm !> @{ subroutine m_micro_run( im, ix, lm, flipv, dt_i & @@ -2003,6 +2005,5 @@ subroutine find_cldtop(ncol, pver, cf, kcldtop) end subroutine find_cldtop -!> @} end module m_micro From cec1ad95f14f02e4fb6c7da2ab1684e9111024ff Mon Sep 17 00:00:00 2001 From: Man Zhang Date: Fri, 27 Mar 2020 15:28:28 -0600 Subject: [PATCH 08/14] fix doc of m_micro --- physics/m_micro.F90 | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/physics/m_micro.F90 b/physics/m_micro.F90 index fceadce09..c81348e43 100644 --- a/physics/m_micro.F90 +++ b/physics/m_micro.F90 @@ -14,8 +14,7 @@ module m_micro contains -!>\ingroup mg_driver -!! This subroutine is the MG initialization. +!> This subroutine is the MG initialization. !> \section arg_table_m_micro_init Argument Table !! \htmlinclude m_micro_init.html !! @@ -103,7 +102,7 @@ end subroutine m_micro_init subroutine m_micro_finalize end subroutine m_micro_finalize -!> \defgroup mg_driver Morrison-Gettelman MP Driver Module +!> \defgroup mg2mg3 Morrison-Gettelman MP Driver Module !! \brief This subroutine is the Morrison-Gettelman MP driver, which computes !! grid-scale condensation and evaporation of cloud condensate. !! @@ -1884,7 +1883,7 @@ end subroutine m_micro_run !DONIF Calculate the Brunt_Vaisala frequency !=============================================================================== -!>\ingroup mg_driver +!>\ingroup mg2mg3 !> This subroutine computes profiles of background state quantities for !! the multiple gravity wave drag parameterization. !!\section gw_prof_gen MG gw_prof General Algorithm @@ -1971,7 +1970,7 @@ subroutine gw_prof (pcols, pver, ncol, t, pm, pi, rhoi, ni, ti, & end subroutine gw_prof !> @} -!>\ingroup mg_driver +!>\ingroup mg2mg3 !! This subroutine is to find cloud top based on cloud fraction. subroutine find_cldtop(ncol, pver, cf, kcldtop) implicit none From 540035a92ba73b6e572acd8c02e98da85283bdaf Mon Sep 17 00:00:00 2001 From: mzhangw Date: Mon, 30 Mar 2020 13:44:06 -0600 Subject: [PATCH 09/14] Update physics/docs/pdftxt/mainpage.txt Co-Authored-By: ligiabernardet --- physics/docs/pdftxt/mainpage.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/physics/docs/pdftxt/mainpage.txt b/physics/docs/pdftxt/mainpage.txt index a670441f5..2abaeca7c 100644 --- a/physics/docs/pdftxt/mainpage.txt +++ b/physics/docs/pdftxt/mainpage.txt @@ -10,7 +10,7 @@ operational implementations. This version contains all parameterizations of the plus additional developmental schemes. There are four suites supported for use with the Single Column Model (SCM) developed by the Development Testbed Center (GFS_v15p2, GFS_v16beta, GSD_v1, and csawmg), and four suites supported for use with the atmospheric component of the UFS (i.e., GFS_v15p2, GFS_v15p2_no_nsst, GFS_v16beta and -GFS_v16beta_no_nsst). The variants labelled as \a no_nsst are simplification of GFS_v15p2 and GFS_v16beta +GFS_v16beta_no_nsst). The variants labelled as \a no_nsst are a simplification of GFS_v15p2 and GFS_v16beta suites . This simplification is needed when the UFS is initialized with files in GRIdded Binary Edition 2 (GRIB2) format instead of files in NOAA Environmental Modeling System (NEMS) Input/Output (NEMSIO) format because the fields necessary to predict (SST) are not available in the GRIB2 files. From 7dea01c47de30b7df77b8396065929dad56ffe7e Mon Sep 17 00:00:00 2001 From: Man Zhang Date: Mon, 30 Mar 2020 13:49:48 -0600 Subject: [PATCH 10/14] minor fix --- physics/docs/pdftxt/all_shemes_list.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/physics/docs/pdftxt/all_shemes_list.txt b/physics/docs/pdftxt/all_shemes_list.txt index c1f3bf1d8..79fd01611 100644 --- a/physics/docs/pdftxt/all_shemes_list.txt +++ b/physics/docs/pdftxt/all_shemes_list.txt @@ -85,7 +85,7 @@ to the parameterization. The CCPP includes the suite GFS_v15p2, which has the same parameterizations used in the GFS v15 implemented operationally in June 2019, and suite GFS_v16beta, i.e., the beta version of the suite planned for GFS v16 to be implemented operationally in 2021. Suite GFS_v16beta is identical to -Suite GFS_v15p2 except for an update in the PBL parameterization (Han et al. 2019 \cite Han_2019 ) and RRTMG. Additionally, CCPP v4 includes two +Suite GFS_v15p2 except for an update in the PBL parameterization (Han et al. 2019 \cite Han_2019 ). Additionally, CCPP v4 includes two developmental suites which are undergoing testing to inform future implementations of the UFS. Suite csawmg differs from GFS_v15p2 as it contains different convection and microphysics schemes made available through a NOAA Climate Process Team (CPT) with components developed at multiple research centers and universities, including Colorado State, Utah, NASA, NCAR, and EMC. Suite GSD_v0 differs from GFS_v15 as it From c494cc728d3fedb157bc46b9907c4f24f560d992 Mon Sep 17 00:00:00 2001 From: Dom Heinzeller Date: Wed, 6 May 2020 09:47:33 -0600 Subject: [PATCH 11/14] Update version from 3.0.0 to 4.0.0 --- CMakeLists.txt | 2 +- physics/docs/pdftxt/UGWPv0.txt | 21 --------------------- 2 files changed, 1 insertion(+), 22 deletions(-) delete mode 100644 physics/docs/pdftxt/UGWPv0.txt diff --git a/CMakeLists.txt b/CMakeLists.txt index 7bd357d46..cd0d1c6d9 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -8,7 +8,7 @@ endif (NOT PROJECT) cmake_minimum_required(VERSION 3.0) project(ccppphys - VERSION 3.0.0 + VERSION 4.0.0 LANGUAGES C CXX Fortran) # Use rpaths on MacOSX diff --git a/physics/docs/pdftxt/UGWPv0.txt b/physics/docs/pdftxt/UGWPv0.txt deleted file mode 100644 index da7009b79..000000000 --- a/physics/docs/pdftxt/UGWPv0.txt +++ /dev/null @@ -1,21 +0,0 @@ -/** -\page UGWPv0 Unified Gravity Wave Physics Version 0 -\section des_UGWP Description - -Gravity waves (GWs) are generated by a variety of sources in the atmosphere including orographic GWs (OGWs; quasi-stationary waves) and non-orographic GWs (NGWs; non-stationary oscillations). The subgrid scale parameterization scheme for OGWs can be found in Section \ref GFS_GWDPS. This scheme represents the operational version of the subgrid scale orography effects in Version 15 of Global Forecast System (GFS). - -The NGW physics scheme parameterizes the effects of non-stationary subgrid-scale waves in the global atmosphere models extended into the stratosphere, mesosphere, and thermosphere. These non-stationary oscillations with periods bounded by Coriolis and Brunt-Väisälä frequencies and typical horizontal scales from tens to several hundreds of kilometers are forced by the imbalance of convective and frontal/jet dynamics in the troposphere and lower stratosphere (Fritts 1984 \cite fritts_1984; Alexander et al. 2010 \cite alexander_et_al_2010; Plougonven and Zhang 2014 \cite plougonven_and_zhang_2014). The NGWs propagate upwards and the amplitudes exponentially grow with altitude until instability and breaking of waves occur. Convective and dynamical instability induced by GWs with large amplitudes can trigger production of small-scale turbulence and self-destruction of waves. The latter process in the theory of atmospheric GWs is frequently referred as the wave saturation (Lindzen 1981 \cite lindzen_1981; Weinstock 1984 \cite weinstock_1984; Fritts 1984 \cite fritts_1984). Herein, “saturation” or "breaking" refers to any processes that act to reduce wave amplitudes due to instabilities and/or interactions arising from large-amplitude perturbations limiting the exponential growth of GWs with height. Background dissipation processes such as molecular diffusion and radiative cooling, in contrast, act independently of GW amplitudes. In the middle atmosphere, impacts of NGW saturation (or breaking) and dissipation on the large-scale circulation, mixing, and transport have been acknowledged in the physics of global weather and climate models after pioneering studies by Lindzen 1981 \cite lindzen_1981 and Holton 1983 \cite holton_1983. Comprehensive reviews on the physics of NGWs and OGWs in the climate research and weather forecasting highlighted the variety of parameterization schemes for NGWs (Alexander et al. 2010 \cite alexander_et_al_2010; Geller et al. 2013 \cite geller_et_al_2013; Garcia et al. 2017 \cite garcia_et_al_2017). They are formulated using different aspects of the nonlinear and linear propagation, instability, breaking and dissipation of waves along with different specifications of GW sources (Garcia et al. 2007 \cite garcia_et_al_2007; Richter et al 2010 \cite richter_et_al_2010; Eckermann et al. 2009 \cite eckermann_et_al_2009; Eckermann 2011 \cite eckermann_2011; Lott et al. 2012 \cite lott_et_al_2012). - -The current operational GFS physics parameterizes effects of stationary OGWs and convective GWs, neglecting the impacts of non-stationary subgrid scale GW physics. This leads to well-known shortcomings in the global model predictions in the stratosphere and upper atmosphere (Alexander et al. 2010 \cite alexander_et_al_2010; Geller et al. 2013). In order to describe the effects of unresolved GWs by dynamical cores in global forecast models, subgrid scales physics of stationary and non-stationary GWs needs to be implemented in the self-consistent manner under the Unified Gravity Wave Physics (UGWP) framework. - -The concept of UGWP and the related programming architecture implemented in FV3GFS was first proposed by CU-CIRES, NOAA Space Weather Prediction Center (SWPC) and Environmental Modeling Center (EMC) for the Unified Forecast System (UFS) with variable positions of the model top lids (Alpert et al. 2019 \cite alpert_et_al_2019; Yudin et al. 2016 \cite yudin_et_al_2016; Yudin et al. 2018 \cite yudin_et_al_2018). As above, the UGWP considers identical GW propagation solvers for OGWs and NGWs with different approaches for specification of subgrid wave sources. The current set of the input and control parameters for UGWP version 0 (UGWP-v0) can select different options for GW effects including momentum deposition (also called GW drag), heat deposition, and mixing by eddy viscosity, conductivity and diffusion. The input GW parameters can control the number of directional azimuths in which waves can propagate, number of waves in single direction, and the interface model layer from the surface at which NGWs can be launched. Among the input parameters, the GW efficiency factors reflect intermittency of wave excitation. They can vary with horizontal resolutions, reflecting capability of the FV3 dynamical core to resolve mesoscale wave activity with the enhancement of model resolution. The prescribed distributions for vertical momentum flux (VMF) of NGWs have been employed in the global forecast models of NWP centers and reanalysis projects to ease tuning of GW schemes to the climatology of the middle atmosphere dynamics in the absence of the global wind data above about 35 km (Eckermann et al. 2009 \cite eckermann_et_al_2009; Molod et al. 2015 \cite molod_et_al_2015). These distributions of VMF qualitatively describe the general features of the latitudinal and seasonal variations of the global GW activity in the lower stratosphere, observed from the ground and space (Ern et al. 2018 \cite ern_et_al_2018). For the long-term climate projections, global models seek to establish communication between model physics and dynamics. This provides variable in time and space excitation of subgrid GWs under year-to-year variations of solar input and anthropogenic emissions (Richter et al 2010 \cite richter_et_al_2010; 2014 \cite richter_et_al_2014). - -Note that in the first release of UGWP (UGWP-v0), the momentum and heat deposition due to GW breaking and dissipation have been tested in the multi-year simulations and medium-range forecasts using FV3GFS-L127 configuration with top lid at about 80 km. In addition, the eddy mixing effects induced by instability of GWs are not activated in this version. Along with the GW heat and momentum depositions, GW eddy mixing is an important element of the Whole Atmosphere Model (WAM) physics, as shown in WAM simulations with the spectral dynamics (Yudin et al. 2018 \cite yudin_et_al_2018). The additional impact of eddy mixing effects in the middle and upper atmosphere need to be further tested, evaluated, and orchestrated with the subgrid turbulent diffusion of the GFS physics (work in progress). In UFS, the WAM with FV3 dynamics (FV3-WAM) will represent the global atmosphere model configuration extended into the thermosphere (top lid at ~600 km). In the mesosphere and thermosphere, the background attenuation of subgrid waves due to molecular and turbulent diffusion, radiative damping and ion drag will be the additional mechanism of NGW and OGW dissipation along with convective and dynamical instability of waves described by the linear (Lindzen 1981 \cite lindzen_1981) and nonlinear (Weinstock 1984 \cite weinstock_1984; Hines 1997 \cite hines_1997) saturation theories. - -\section intra_UGWPv0 Intraphysics Communication -\ref arg_table_cires_ugwp_run - -\section gen_al_ugwpv0 General Algorithm -\ref cires_ugwp_run - -*/ From 5229075e2bb1f2e45818890c7386b923bca7ff42 Mon Sep 17 00:00:00 2001 From: Dom Heinzeller Date: Wed, 6 May 2020 09:47:51 -0600 Subject: [PATCH 12/14] Fix merge conflicts and apply missing updates for scientific documentation --- physics/docs/pdftxt/CPT_adv_suite.txt | 68 ++++--- physics/docs/pdftxt/GFS_OZPHYS.txt | 2 +- physics/docs/pdftxt/GSD_adv_suite.txt | 231 +++++++++++++++--------- physics/docs/pdftxt/all_shemes_list.txt | 15 +- physics/docs/pdftxt/mainpage.txt | 9 +- physics/docs/pdftxt/suite_input.nml.txt | 60 ++++-- 6 files changed, 253 insertions(+), 132 deletions(-) diff --git a/physics/docs/pdftxt/CPT_adv_suite.txt b/physics/docs/pdftxt/CPT_adv_suite.txt index 132d8bd11..ce51b6a30 100644 --- a/physics/docs/pdftxt/CPT_adv_suite.txt +++ b/physics/docs/pdftxt/CPT_adv_suite.txt @@ -3,31 +3,28 @@ \section csawmg_suite_overview Overview -The advanced csawmg physics suite uses the parameterizations in the following order: +The csawmg physics suite uses the parameterizations in the following order: - \ref GFS_RRTMG - \ref GFS_SFCLYR - \ref GFS_NSST - \ref GFS_NOAH - \ref GFS_SFCSICE - \ref GFS_HEDMF - - \ref GFS_GWDPS + - \ref GFS_UGWP_v0 - \ref GFS_RAYLEIGH - \ref GFS_OZPHYS - \ref GFS_H2OPHYS - \ref CSAW_scheme - - \ref GFS_GWDC - \ref GFS_SAMFshal - \ref CPT_MG3 - \ref mod_cs_conv_aw_adj - \ref GFS_CALPRECIPTYPE \section sdf_cpt_suite Suite Definition File - -The advanced csawmg physics suite uses the parameterizations in the following order, as defined in \c SCM_csawmg : \code - + @@ -56,9 +53,10 @@ The advanced csawmg physics suite uses the parameterizations in the following or GFS_suite_stateout_reset get_prs_fv3 GFS_suite_interstitial_1 - dcyc2t3 GFS_surface_generic_pre GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter GFS_suite_interstitial_2 @@ -83,8 +81,9 @@ The advanced csawmg physics suite uses the parameterizations in the following or hedmf GFS_PBL_generic_post GFS_GWD_generic_pre - gwdps - gwdps_post + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post rayleigh_damp GFS_suite_stateout_update ozphys_2015 @@ -96,12 +95,8 @@ The advanced csawmg physics suite uses the parameterizations in the following or cs_conv cs_conv_post GFS_DCNV_generic_post - gwdc_pre - gwdc - gwdc_post GFS_SCNV_generic_pre samfshalcnv - samfshalcnv_post GFS_SCNV_generic_post GFS_suite_interstitial_4 cnvc90 @@ -111,21 +106,20 @@ The advanced csawmg physics suite uses the parameterizations in the following or m_micro_post cs_conv_aw_adj GFS_MP_generic_post - sfc_sice_post maximum_hourly_diagnostics - \endcode -\section cpt_nml_option Namelist Option +\section cpt_nml_option Namelist \code &gfs_physics_nml fhzero = 6. ldiag3d = .true. fhcyc = 24. + nst_anl = .true. use_ufo = .true. pre_rad = .false. crtrh = 0.93,0.90,0.95 @@ -147,25 +141,40 @@ The advanced csawmg physics suite uses the parameterizations in the following or shal_cnv = .true. cal_pre = .false. redrag = .true. - dspheat = .true. + dspheat = .false. hybedmf = .true. satmedmf = .false. - lheatstrg = .true. + lheatstrg = .false. random_clds = .true. trans_trac = .true. - cnvcld = .true. + cnvcld = .false. imfshalcnv = 2 imfdeepcnv = -1 cdmbgwd = 3.5,0.25 prslrd0 = 0. ivegsrc = 1 isot = 1 + lsm = 1 + iopt_dveg = 2 + iopt_crs = 1 + iopt_btr = 1 + iopt_run = 1 + iopt_sfc = 1 + iopt_frz = 1 + iopt_inf = 1 + iopt_rad = 1 + iopt_alb = 2 + iopt_snf = 4 + iopt_tbot = 2 + iopt_stc = 1 oz_phys = .false. oz_phys_2015 = .true. debug = .false. + ras = .false. cscnv = .true. do_shoc = .false. + shoc_parm = 7000.0,1.0,2.0,0.7,-999.0 do_aw = .true. shoc_cld = .false. h2o_phys = .true. @@ -173,8 +182,6 @@ The advanced csawmg physics suite uses the parameterizations in the following or xkzm_h = 0.5 xkzm_m = 0.5 xkzm_s = 1.0 - nstf_name = 2,1,1,0,5 - nst_anl = .true. ccwf = 1.0,1.0 dlqf = 0.25,0.05 mg_dcs = 200.0 @@ -190,12 +197,13 @@ The advanced csawmg physics suite uses the parameterizations in the following or mg_do_ice_gmao = .false. mg_do_liq_liu = .true. cs_parm = 8.0,4.0,1.0e3,3.5e3,20.0,1.0,0.0,1.0,0.6,0.0 - shoc_parm = 7000.0,1.0,2.0,0.7,-999.0 ctei_rm = 0.60,0.23 max_lon = 8000 max_lat = 4000 rhcmax = 0.9999999 effr_in = .true. + + nstf_name = 2,1,1,0,5 ltaerosol = .false. lradar = .false. cplflx = .false. @@ -203,6 +211,22 @@ The advanced csawmg physics suite uses the parameterizations in the following or iaufhrs = 30 iau_inc_files = "''" / + +&cires_ugwp_nml + knob_ugwp_solver = 2 + knob_ugwp_source = 1,1,0,0 + knob_ugwp_wvspec = 1,25,25,25 + knob_ugwp_azdir = 2,4,4,4 + knob_ugwp_stoch = 0,0,0,0 + knob_ugwp_effac = 1,1,1,1 + knob_ugwp_doaxyz = 1 + knob_ugwp_doheat = 1 + knob_ugwp_dokdis = 1 + knob_ugwp_ndx4lh = 1 + knob_ugwp_version = 0 + launch_level = 25 +/ +/ \endcode diff --git a/physics/docs/pdftxt/GFS_OZPHYS.txt b/physics/docs/pdftxt/GFS_OZPHYS.txt index fadaf95a5..3a2ddc173 100644 --- a/physics/docs/pdftxt/GFS_OZPHYS.txt +++ b/physics/docs/pdftxt/GFS_OZPHYS.txt @@ -1,5 +1,5 @@ /** -\page GFS_OZPHYS GFS Ozone Photochemistry Scheme +\page GFS_OZPHYS GFS Ozone Photochemistry (2015) Scheme \section des_ozone Description In recent years, the leading NWP centers have extended the vertical range of their NWP and DA systems from the surface up through the stratosphere (~10-50 km altitude) and lower mesosphere (~50-65 km). Some diff --git a/physics/docs/pdftxt/GSD_adv_suite.txt b/physics/docs/pdftxt/GSD_adv_suite.txt index fb662bc22..3ee38f32f 100644 --- a/physics/docs/pdftxt/GSD_adv_suite.txt +++ b/physics/docs/pdftxt/GSD_adv_suite.txt @@ -1,47 +1,38 @@ /** -\page GSD_v0_page GSD_v0 Suite +\page GSD_v1_page GSD_v1 Suite \section gsd_suite_overview Overview -The original Rapid Update Cycle (RUC), implemented in 1994, was designed to provide accurate short-range (0 to 12-hr) -numerical forecast guidance for weather-sensitive users, including those in the U.S. aviation community. -The RUC started to run every hour starting in 1998. Significant weather forecasting problems that occur in the 0- to -12-hr range include severe weather in all seasons (for example, tornadoes, severe thunderstorms, crippling snow, and -ice storms) and hazards to aviation (for example, clear air turbulence, icing, and downbursts). The RUC soon became a -key model for short-range convectiion forecasts and for the pre-convective environments. +Suite GSD_v1 contains the parameterizations used in the NOAA operational Rapid Refresh (RAP) +and High-Resolution Rapid Refresh (HRRR) models. These models runs at 13- and 3- km resolution, +respectively. -The RAP, which replaced the RUC in 2012, runs hourly at the National Centers for Environmental Prediction (NCEP), providing -high frequency updates of current conditions and short-range forecasts over North America at 13km resolution. A CONUS-nested -version at 3-km resolution called the High Resolution Rapid Refresh (HRRR), was implemented in the fall of 2014. Additional Model Information Links: - https://rapidrefresh.noaa.gov - https://rapidrefresh.noaa.gov/hrrr/ -The advanced GSD RAP/HRRR physics suite uses the parameterizations in the following order: +The GSD_v1 physics suite uses the parameterizations in the following order: - \ref GFS_RRTMG - \ref GFS_SFCLYR - \ref GFS_NSST - \ref GSD_RUCLSM - \ref GSD_MYNNEDMF - - \ref GFS_GWDPS + - \ref GFS_UGWP_v0 - \ref GFS_RAYLEIGH - \ref GFS_OZPHYS - \ref GFS_H2OPHYS - \ref GSD_CU_GF - \ref cu_gf_deep_group - \ref cu_gf_sh_group - - \ref GFS_GWDC - \ref GSD_THOMPSON - \ref GFS_CALPRECIPTYPE \section sdf_gsdsuite Suite Definition File - -The GSD RAP/HRRR physics suite uses the parameterizations in the following order, as defined in \c SCM_GSD_v0: \code - + @@ -72,9 +63,10 @@ The GSD RAP/HRRR physics suite uses the parameterizations in the following order GFS_suite_stateout_reset get_prs_fv3 GFS_suite_interstitial_1 - dcyc2t3 GFS_surface_generic_pre GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter GFS_suite_interstitial_2 @@ -85,6 +77,9 @@ The GSD RAP/HRRR physics suite uses the parameterizations in the following order sfc_nst sfc_nst_post lsm_ruc + lsm_ruc_sfc_sice_pre + sfc_sice + lsm_ruc_sfc_sice_post GFS_surface_loop_control_part2 @@ -96,8 +91,9 @@ The GSD RAP/HRRR physics suite uses the parameterizations in the following order GFS_surface_generic_post mynnedmf_wrapper GFS_GWD_generic_pre - gwdps - gwdps_post + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post rayleigh_damp GFS_suite_stateout_update ozphys_2015 @@ -108,9 +104,6 @@ The GSD RAP/HRRR physics suite uses the parameterizations in the following order cu_gf_driver_pre cu_gf_driver GFS_DCNV_generic_post - gwdc_pre - gwdc - gwdc_post GFS_SCNV_generic_pre GFS_SCNV_generic_post GFS_suite_interstitial_4 @@ -126,73 +119,149 @@ The GSD RAP/HRRR physics suite uses the parameterizations in the following order - \endcode -\section gsd_nml_option Namelist Option +\section gsd_nml_option Namelist \code &gfs_physics_nml - fhzero = 6. - h2o_phys = .true. - ldiag3d = .true. - fhcyc = 0. - nst_anl = .true. - use_ufo = .true. - pre_rad = .false. - ncld = 5 - imp_physics = 8 - ltaerosol = .true. - lradar = .true. - ttendlim = -999. - pdfcld = .false. - fhswr = 3600. - fhlwr = 3600. - ialb = 1 - iems = 1 - iaer = 111 - ico2 = 2 - isubc_sw = 2 - isubc_lw = 2 - isol = 2 - lwhtr = .true. - swhtr = .true. - cnvgwd = .true. - shal_cnv = .true. - cal_pre = .false. - redrag = .true. - dspheat = .true. - hybedmf = .false. - satmedmf = .false. - lheatstrg = .false. - do_mynnedmf = .true. - do_mynnsfclay = .false. - random_clds = .false. - trans_trac = .true. - cnvcld = .true. - imfshalcnv = 3 - imfdeepcnv = 3 - cdmbgwd = 3.5,0.25 - prslrd0 = 0. - ivegsrc = 1 - isot = 1 - debug = .false. - oz_phys = .false. - oz_phys_2015 = .true. - nstf_name = 2,1,1,0,5 - cplflx = .false. - iau_delthrs = 6 - iaufhrs = 30 - iau_inc_files = "''" - do_sppt = .false. - do_shum = .false. - do_skeb = .false. - do_sfcperts = .false. - lsm = 2 - lsoil_lsm = 9 + fhzero = 6. + h2o_phys = .true. + ldiag3d = .true. + fhcyc = 0. + nst_anl = .true. + use_ufo = .true. + pre_rad = .false. + ncld = 5 + imp_physics = 8 + ltaerosol = .true. + lradar = .true. + ttendlim = 0.004 + pdfcld = .false. + fhswr = 3600. + fhlwr = 3600. + ialb = 1 + iems = 1 + iaer = 111 + ico2 = 2 + isubc_sw = 2 + isubc_lw = 2 + isol = 2 + lwhtr = .true. + swhtr = .true. + cnvgwd = .true. + shal_cnv = .true. + cal_pre = .false. + redrag = .true. + dspheat = .true. + hybedmf = .false. + satmedmf = .false. + lheatstrg = .false. + do_mynnedmf = .true. + do_mynnsfclay = .false. + random_clds = .false. + trans_trac = .true. + cnvcld = .true. + imfshalcnv = 3 + imfdeepcnv = 3 + cdmbgwd = 3.5,0.25 + prslrd0 = 0. + ivegsrc = 1 + isot = 1 + debug = .false. + oz_phys = .false. + oz_phys_2015 = .true. + nstf_name = 2,1,1,0,5 + cplflx = .false. + iau_delthrs = 6 + iaufhrs = 30 + iau_inc_files = "''" + do_sppt = .false. + do_shum = .false. + do_skeb = .false. + do_sfcperts = .false. + lsm = 3 + lsoil_lsm = 9 + iopt_dveg = 2 + iopt_crs = 1 + iopt_btr = 1 + iopt_run = 1 + iopt_sfc = 1 + iopt_frz = 1 + iopt_inf = 1 + iopt_rad = 1 + iopt_alb = 2 + iopt_snf = 4 + iopt_tbot = 2 + iopt_stc = 1 icloud_bl = 1 bl_mynn_tkeadvect = .true. bl_mynn_edmf = 1 bl_mynn_edmf_mom = 1 + gwd_opt = 1 +/ + +&gfdl_cloud_microphysics_nml + sedi_transport = .true. + do_sedi_heat = .false. + rad_snow = .true. + rad_graupel = .true. + rad_rain = .true. + const_vi = .F. + const_vs = .F. + const_vg = .F. + const_vr = .F. + vi_max = 1. + vs_max = 2. + vg_max = 12. + vr_max = 12. + qi_lim = 1. + prog_ccn = .false. + do_qa = .false. + fast_sat_adj = .false. + tau_l2v = 225. + tau_v2l = 150. + tau_g2v = 900. + rthresh = 10.e-6 + dw_land = 0.16 + dw_ocean = 0.10 + ql_gen = 1.0e-3 + ql_mlt = 1.0e-3 + qi0_crt = 8.0E-5 + qs0_crt = 1.0e-3 + tau_i2s = 1000. + c_psaci = 0.05 + c_pgacs = 0.01 + rh_inc = 0.30 + rh_inr = 0.30 + rh_ins = 0.30 + ccn_l = 300. + ccn_o = 100. + c_paut = 0.5 + c_cracw = 0.8 + use_ppm = .false. + use_ccn = .true. + mono_prof = .true. + z_slope_liq = .true. + z_slope_ice = .true. + de_ice = .false. + fix_negative = .true. + icloud_f = 1 + mp_time = 150. +/ + +&cires_ugwp_nml + knob_ugwp_solver = 2 + knob_ugwp_source = 1,1,0,0 + knob_ugwp_wvspec = 1,25,25,25 + knob_ugwp_azdir = 2,4,4,4 + knob_ugwp_stoch = 0,0,0,0 + knob_ugwp_effac = 1,1,1,1 + knob_ugwp_doaxyz = 1 + knob_ugwp_doheat = 1 + knob_ugwp_dokdis = 1 + knob_ugwp_ndx4lh = 1 + knob_ugwp_version = 0 + launch_level = 25 / \endcode diff --git a/physics/docs/pdftxt/all_shemes_list.txt b/physics/docs/pdftxt/all_shemes_list.txt index 79fd01611..4d7d08e90 100644 --- a/physics/docs/pdftxt/all_shemes_list.txt +++ b/physics/docs/pdftxt/all_shemes_list.txt @@ -1,11 +1,10 @@ /** \page allscheme_page Parameterizations and Suites Overview -\section allscheme_overview Physics Parameterizations +\section allscheme_overview Physical Parameterizations -In the CCPP-Physics v3.0 release, each parameterization is in its own modern Fortran module, - which facilitates model development and -code maintenance. While some individual parameterization can be invoked for the GMTB SCM, most users will assemble the +In the CCPP, each parameterization is in its own modern Fortran module, which facilitates model development and +code maintenance. While some individual parameterization can be invoked for the SCM, most users will assemble the parameterizations in suites. - \b Radiation @@ -38,15 +37,13 @@ parameterizations in suites. - \b Ozone \b Photochemical \b Production \b and \b Loss - \subpage GFS_OZPHYS - - \ref GFS_ozphys_2015 - \b Water \b Vapor \b Photochemical \b Production \b and \b Loss - \subpage GFS_H2OPHYS - \b Gravity \b Wave \b Drag - - \subpage GFS_GWDPS - - \subpage GFS_GWDC - - \subpage UGWPv0 + - \subpage GFS_UGWP_v0 + - \subpage GFS_GWDPS - \b Surface \b Layer \b and \b Simplified \b Ocean \b and \b Sea \b Ice \b Representation - \subpage GFS_SFCLYR @@ -88,7 +85,7 @@ GFS_v16beta, i.e., the beta version of the suite planned for GFS v16 to be imple Suite GFS_v15p2 except for an update in the PBL parameterization (Han et al. 2019 \cite Han_2019 ). Additionally, CCPP v4 includes two developmental suites which are undergoing testing to inform future implementations of the UFS. Suite csawmg differs from GFS_v15p2 as it contains different convection and microphysics schemes made available through a NOAA Climate Process Team (CPT) with components developed -at multiple research centers and universities, including Colorado State, Utah, NASA, NCAR, and EMC. Suite GSD_v0 differs from GFS_v15 as it +at multiple research centers and universities, including Colorado State, Utah, NASA, NCAR, and EMC. Suite GSD_v1 differs from GFS_v15p2 as it uses the convection, microphysics, and boundary layer schemes employed in the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR \cite Benjamin_2016 ) operational models and was assembled by NOAA/GSD. An assessment of an earlier version of these suites can be found in the UFS portal diff --git a/physics/docs/pdftxt/mainpage.txt b/physics/docs/pdftxt/mainpage.txt index 2abaeca7c..fdf7d1294 100644 --- a/physics/docs/pdftxt/mainpage.txt +++ b/physics/docs/pdftxt/mainpage.txt @@ -1,11 +1,12 @@ /** \mainpage Introduction -Welcome to the scientific documentation for the parameterizations available in the Common -Community Physics Package (CCPP) v3.0 public release. +Welcome to the scientific documentation for the parameterizations and suites available in the Common +Community Physics Package (CCPP) v4. -The CCPP-Physics is envisioned to contain parameterizations used by NOAA operational models for weather through -seasonal prediction timescales, as well as developmental schemes under consideration for upcoming +The CCPP-Physics is envisioned to contain parameterizations used in NOAA's Unified Forecast System (UFS) +applications for weather through seasonal prediction timescales, encompassing operational schemes as well as +developmental schemes under consideration for upcoming operational implementations. This version contains all parameterizations of the current operational GFS, plus additional developmental schemes. There are four suites supported for use with the Single Column Model (SCM) developed by the Development Testbed Center (GFS_v15p2, GFS_v16beta, GSD_v1, and csawmg), and four suites diff --git a/physics/docs/pdftxt/suite_input.nml.txt b/physics/docs/pdftxt/suite_input.nml.txt index 95b77c22f..2565c58eb 100644 --- a/physics/docs/pdftxt/suite_input.nml.txt +++ b/physics/docs/pdftxt/suite_input.nml.txt @@ -1,20 +1,24 @@ /** -\page GFSsuite_nml Namelist Options Description +\page CCPPsuite_nml_desp Namelist Options Description -At runtime, the SCM and the UFS Atmosphere access runtime configurations from file \c input.nml. This file contains -various namelists that control aspects of the I/O, dynamics, physics etc. Most physics-related options are grouped into -two namelists:\b &gfs_physics_nml and \b &gfdl_cloud_microphysics_nml, with additional specifications for stochastic physics in +The SCM and the UFS Atmosphere access runtime configurations from file \c input.nml. This file contains +various namelists records that control aspects of the I/O, dynamics, physics etc. Most physics-related options are in +reords \b &gfs_physics_nml and \b &cires_ugwp_nml. When using the GFDL microphysics scheme, variables in namelist +\b &gfdl_cloud_microphysics_nml are also used. Additional specifications for stochastic physics are in namelists \b &stochy_nam and \b &nam_sfcperts. - Namelist \b &gfdl_cloud_microphysics_nml is only relevant when the GFDL microphysics is used, and its variables are defined in module_gfdl_cloud_microphys.F90. +- Namelist \b &cires_ugwp_nml specifies options for the use of CIRES Unified Gravity Wave Physics Version 0. + - Namelist \b &gfs_physics_nml pertains to all of the suites used, but some of the variables are only relevant for specific parameterizations. Its variables are defined in file GFS_typedefs.F90 in the host model. - Namelist \b &stochy_nam specifies options for the use of SPPT, SKEB and SHUM, while namelist \b &nam_sfcperts specifies whether and how stochastic perturbations are used in the Noah Land Surface Model. +
NML Description
option DDT in Host Model Description Default Value @@ -117,13 +121,19 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
  • =2 future development (not yet)
  • 0 -
    iaer gfs_control_type aerosol flag "abc" (volcanic, LW, SW): \n +
    iaer gfs_control_type 4-digit aerosol flag (dabc for aermdl, volcanic, LW, SW): \n
      -
    • a: stratospheric volcanic aerosols -
    • b: tropospheric aerosols for LW -
    • c: tropospheric aerosols for SW \n - 0: aerosol effect is not included; \n - 1: aerosol effect is included +
    • d:tropospheric aerosol model scheme flag \n + =0 or none, opac-climatology aerosol scheme \n + =1 use gocart climatology aerosol scheme \n + =2 use gocart prognostic aerosol scheme \n + =5 opac-clim new spectral mapping +
    • a:=0 use background stratospheric aerosol \n + =1 include stratospheric volcanic aerosol +
    • b:=0 no tropospheric aerosol in LW radiation \n + =1 include tropospheric aerosol in LW +
    • c:=0 no tropospheric aerosol in SW radiation \n + =1 include tropospheric aerosol in SW
    1
    ico2 gfs_control_type \f$CO_2\f$ data source control flag:\n @@ -159,7 +169,7 @@ and how stochastic perturbations are used in the Noah Land Surface Model. 0
    lwhtr gfs_control_type logical flag for output of longwave heating rate .true.
    swhtr gfs_control_type logical flag for output of shortwave heating rate .true. -
    cnvgwd gfs_control_type logical flag for convective gravity wave drag scheme .false. +
    cnvgwd gfs_control_type logical flag for convective gravity wave drag scheme dependent on maxval(cdmbgwd(3:4) == 0.0) .false.
    shal_cnv gfs_control_type logical flag for calling shallow convection .false.
    lmfshal gfs_control_type flag for mass-flux shallow convection scheme in the cloud fraction calculation shal_cnv .and. (imfshalcnv > 0)
    lmfdeep2 gfs_control_type flag for mass-flux deep convection scheme in the cloud fraction calculation imfdeepcnv == 2 .or. 3 .or.4 @@ -168,6 +178,12 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
    dspheat gfs_control_type logical flag for using TKE dissipative heating to temperature tendency in hybrid EDMF and TKE-EDMF schemes .false.
    hybedmf gfs_control_type logical flag for calling hybrid EDMF PBL scheme .false.
    satmedmf gfs_control_type logical flag for calling TKE EDMF PBL scheme .false. +
    isatmedmf gfs_control_type flag for scale-aware TKE-based moist EDMF scheme \n +
      +
    • 0: initial version of satmedmf (Nov.2018) +
    • 1: updated version of satmedmf (as of May 2019) +
    +
    0
    do_mynnedmf gfs_control_type flag to activate MYNN-EDMF scheme .false.
    random_clds gfs_control_type logical flag for whether clouds are random .false.
    trans_trac gfs_control_type logical flag for convective transport of tracers .false. @@ -187,6 +203,7 @@ and how stochastic perturbations are used in the Noah Land Surface Model. 1
    imfdeepcnv gfs_control_type flag for mass-flux deep convective scheme:\n
      +
    • -1: Chikira-Sugiyama deep convection (with \b cscnv = .T.)
    • 1: July 2010 version of SAS convective scheme (operational version as of 2016)
    • 2: scale- & aerosol-aware mass-flux deep convective scheme (2017)
    • 3: scale- & aerosol-aware Grell-Freitas scheme (GSD) @@ -194,12 +211,18 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
    1
    lgfdlmprad gfs_control_type flag for GFDL mp scheme and radiation consistency .false. -
    cdmbgwd(2) gfs_control_type multiplication factors for mountain blocking and orographic gravity wave drag 2.0,0.25 +
    cdmbgwd(4) gfs_control_type multiplication factors for mountain blocking(1), orographic gravity wave drag(2) +
      +
    • [1]: GWDPS mountain blocking +
    • [2]: GWDPS orographic gravity wave drag +
    • [3]: the modulation total momentum flux of NGWs by intensities of the total precipitation +
    • [4]: TKE for future tests and applications +
    +
    2.0,0.25,1.0,1.0
    prslrd0 gfs_control_type pressure level above which to apply Rayleigh damping 0.0d0
    lsm gfs_control_type flag for land surface model to use \n
      -
    • 0: OSU LSM -
    • 1: NOAH LSM +
    • 1: Noah LSM
    • 2: RUC LSM
    1 @@ -342,7 +365,14 @@ and how stochastic perturbations are used in the Noah Land Surface Model. 1
    lsoil_lsm gfs_control_type number of soil layers internal to land surface model -1 -
    \b Stochastic \b Physics \b Specific \b Parameters +
    ldiag_ugwp GFS_control_type flag for CIRES UGWP diagnostics .false. +
    do_ugwp GFS_control_type flag for CIRES UGWP revised OGW +
      +
    • .T.: revised gwdps_v0 +
    • .F.: GFS operational orographic gwdps +
    +
    .false. +
    do_tofd GFS_control_type flag for turbulent orographic form drag .false.
    do_sppt gfs_control_type flag for stochastic SPPT option .false.
    do_shum gfs_control_type flag for stochastic SHUM option .false.
    do_skeb gfs_control_type flag for stochastic SKEB option .false. From 6c1eec4f354d305bc8088ac883e9f133785a6514 Mon Sep 17 00:00:00 2001 From: Dom Heinzeller Date: Wed, 6 May 2020 10:19:41 -0600 Subject: [PATCH 13/14] Remove dcyc2t3_post from physics/dcyc2.meta and scientific documentation --- physics/dcyc2.meta | 67 ------------------- physics/docs/pdftxt/CPT_adv_suite.txt | 1 - physics/docs/pdftxt/GFSv14_suite.txt | 1 - physics/docs/pdftxt/GFSv15_suite.txt | 1 - physics/docs/pdftxt/GFSv15_suite_TKEEDMF.txt | 1 - physics/docs/pdftxt/GSD_adv_suite.txt | 1 - .../docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt | 1 - .../suite_FV3_GFS_v15p2_no_nsst.xml.txt | 1 - .../docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt | 1 - .../suite_FV3_GFS_v16beta_no_nsst.xml.txt | 1 - 10 files changed, 76 deletions(-) diff --git a/physics/dcyc2.meta b/physics/dcyc2.meta index 244ebc6bd..9a5687bf5 100644 --- a/physics/dcyc2.meta +++ b/physics/dcyc2.meta @@ -535,70 +535,3 @@ type = integer intent = out optional = F - -######################################################################## -[ccpp-arg-table] - name = dcyc2t3_post_init - type = scheme - -######################################################################## -[ccpp-arg-table] - name = dcyc2t3_post_finalize - type = scheme - -######################################################################## -[ccpp-arg-table] - name = dcyc2t3_post_run - type = scheme -[im] - standard_name = horizontal_loop_extent - long_name = horizontal loop extent - units = count - dimensions = () - type = integer - intent = in - optional = F -[adjsfcdsw] - standard_name = surface_downwelling_shortwave_flux - long_name = surface downwelling shortwave flux at current time - units = W m-2 - dimensions = (horizontal_dimension) - type = real - kind = kind_phys - intent = in - optional = F -[adjsfcnsw] - standard_name = surface_net_downwelling_shortwave_flux - long_name = surface net downwelling shortwave flux at current time - units = W m-2 - dimensions = (horizontal_dimension) - type = real - kind = kind_phys - intent = in - optional = F -[adjsfcusw] - standard_name = surface_upwelling_shortwave_flux - long_name = surface upwelling shortwave flux at current time - units = W m-2 - dimensions = (horizontal_dimension) - type = real - kind = kind_phys - intent = out - optional = F -[errmsg] - standard_name = ccpp_error_message - long_name = error message for error handling in CCPP - units = none - dimensions = () - type = character - kind = len=* - intent = out - optional = F -[errflg] - standard_name = ccpp_error_flag - long_name = error flag for error handling in CCPP - units = flag - dimensions = () - type = integer - intent = out - optional = F diff --git a/physics/docs/pdftxt/CPT_adv_suite.txt b/physics/docs/pdftxt/CPT_adv_suite.txt index ce51b6a30..26d514d51 100644 --- a/physics/docs/pdftxt/CPT_adv_suite.txt +++ b/physics/docs/pdftxt/CPT_adv_suite.txt @@ -73,7 +73,6 @@ The csawmg physics suite uses the parameterizations in the following order: GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/GFSv14_suite.txt b/physics/docs/pdftxt/GFSv14_suite.txt index 23f611a25..d1dcb038c 100644 --- a/physics/docs/pdftxt/GFSv14_suite.txt +++ b/physics/docs/pdftxt/GFSv14_suite.txt @@ -75,7 +75,6 @@ The GFS v14 suite uses the parameterizations in the following order, as defined - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/GFSv15_suite.txt b/physics/docs/pdftxt/GFSv15_suite.txt index 6b5fddcf8..abf446224 100644 --- a/physics/docs/pdftxt/GFSv15_suite.txt +++ b/physics/docs/pdftxt/GFSv15_suite.txt @@ -85,7 +85,6 @@ The GFS v15 suite uses the parameterizations in the following order, as defined GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/GFSv15_suite_TKEEDMF.txt b/physics/docs/pdftxt/GFSv15_suite_TKEEDMF.txt index 56a1f97f5..6215fe361 100644 --- a/physics/docs/pdftxt/GFSv15_suite_TKEEDMF.txt +++ b/physics/docs/pdftxt/GFSv15_suite_TKEEDMF.txt @@ -76,7 +76,6 @@ The GFS v15plus suite uses the parameterizations in the following order, as defi GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/GSD_adv_suite.txt b/physics/docs/pdftxt/GSD_adv_suite.txt index 3ee38f32f..39c5ebd20 100644 --- a/physics/docs/pdftxt/GSD_adv_suite.txt +++ b/physics/docs/pdftxt/GSD_adv_suite.txt @@ -85,7 +85,6 @@ The GSD_v1 physics suite uses the parameterizations in the following order: GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt index f12b0c366..4074ddfc7 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt @@ -58,7 +58,6 @@ GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt index cd29eecdb..7a60f5e1c 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt @@ -56,7 +56,6 @@ GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt index 722224988..4abafe01a 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt @@ -58,7 +58,6 @@ GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt index adeb4352a..e783be1f9 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt @@ -56,7 +56,6 @@ GFS_surface_composites_post - dcyc2t3_post sfc_diag sfc_diag_post GFS_surface_generic_post From e340e62c6c6186cc4e5384459ee23f8bd2da659a Mon Sep 17 00:00:00 2001 From: Dom Heinzeller Date: Mon, 11 May 2020 07:32:57 -0600 Subject: [PATCH 14/14] physics/m_micro.F90: correct syntax for \htmlinclude statement --- physics/m_micro.F90 | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/physics/m_micro.F90 b/physics/m_micro.F90 index c81348e43..8b2b4c99f 100644 --- a/physics/m_micro.F90 +++ b/physics/m_micro.F90 @@ -107,7 +107,7 @@ end subroutine m_micro_finalize !! grid-scale condensation and evaporation of cloud condensate. !! !> \section arg_table_m_micro_run Argument Table -!> \htmlinclude m_micro_run.html +!! \htmlinclude m_micro_run.html !! !>\section detail_m_micro_run MG m_micro_run Detailed Algorithm !> @{