
 »

!

 Installa!on

!

 Installation

This sec!on describes how to install the PDS Deep Archive. Because the instruc!ons
vary markedly based on pla"orm, it’s divided into two sec!ons:

Unix and Unix-like systems, including Linux and macOS
Windows systems

Unix and Unix-Like Systems

Follow the instruc!ons in this sec!on to install the Deep Archive so#ware onto Unix
and Unix-like systems. This includes opera!ng systems such as Linux, FreeBSD,
OpenBSD, NetBSD, etc., as well as Apple Macintosh systems running macOS.

For users of Windows systems, see the next sec!on, below.

Requirements

Prior to installing this so#ware, ensure your system meets the following requirements:

Python 3. This so#ware requires Python 3.9, 3.10, or 3.11. Python 2 will absolutely
not work, and indeed Python 2 came to its end of life on the first of January, 2020.
Run python --version , or python3 --version , to check what is installed.
libxml2 version 2.9.2; later 2.9 versions are fine. Run xml2-config --version to

find out.
libxslt version 1.1.28; later 1.1 versions are OK too. Run xslt-config to see.

Consult your opera!ng system instruc!ons or system administrator to install the
required packages. For those without system administrator access and are feeling
anxious, you could try a local (home directory) Python 3 installa!on using Miniconda.

Doing the Installation on Unix

file:///Users/kelly/Documents/Clients/JPL/PDS/Development/nasa-pds/deep-archive/docs/html/index.html
https://www.python.org/
https://www.python.org/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

 Note

Some things to be aware of regarding examples below:

The octothorp characters # below indicate comments and need not be typed in.
The loca!on of where you choose to create a Python virtual environment is
en!rely your preference.
The examples below should be seen only as sugges!ons. Invoking command lines
below are demonstra!ve.
Please consult your system documenta!on for the appropriate invoca!ons for
your opera!ng system, command shell (or “terminal”), and so forth.

The easiest way to install this so#ware is to use Pip, the Python Package Installer. If you
have Python on your system, you probably already have Pip; you can run pip --help or
pip3 --help to check.

It’s best install the PDS Deep Archive into a virtual environment so it won’t interfere
with—or be interfered by—other packages. To do so:

Example assumes bash command shell. For others, consult shell documentation.
mkdir -p $HOME/.virtualenvs
python3 -m venv $HOME/.virtualenvs/pds-deep-archive
source $HOME/.virtualenvs/pds-deep-archive/bin/activate
pip3 install pds.deeparchive

You can then run pds-deep-archive --help or pds-deep-registry-archive --help to get
a usage message and ensure it’s properly installed.

 Note

The above commands will install last approved release from the Python Package
Index (“Cheeseshop”). The latest, cu$ng edge release is posted at the Test Package
Index, but these releases may not be fully confirmed to be opera!onal. If you like
taking risks, run the following to create a new virtual environment and install the
latest development version of the so#ware:

https://pip.pypa.io/en/stable/
https://docs.python.org/3/library/venv.html
https://pypi.org/

mkdir -p $HOME/.virtualenvs
python3 -m venv $HOME/.virtualenvs/pds-deep-archive
source $HOME/.virtualenvs/pds-deep-archive/bin/activate
pip3 install --index-url https://test.pypi.org/simple --extra-index-url
https://pypi.org/simple`` pds.deeparchive

Windows Installation

To install the Deep Archive so#ware on Windows comprises the following steps:

1. Installing Python 3.11 for Windows
2. Crea!ng a “virtual environment” to contain an isolated instance of Python 3.11
3. Installing LXML 4.9.0 for Python 3.11 into the virtual environment
4. Installing the PDS Deep Archive into the virtual environment

The remainder of this sec!on details these steps.

Installing Python for Windows

Python 3.11 (and specifically Python 3.11—no later or earlier versions will work) will
need to be installed onto your Windows system. There are several ways to get Python
3.11:

The “Microso# Store” app
Directly from h%ps://python.org/
Using Anaconda
Using Miniconda

Use whatever is the most familiar to you. If you’re not sure, the Microso# Store app is
probably the easiest. To use the Microso# Store to install Python 3.11, do the following:

1. In the Windows taskbar’s search box or Start Menu, open Microso# Store.
2. In the search box at the top, type Python 3.11

3. In the list of matching results, press the “Get” bu%on next to Python 3.11.

 Tip

https://python.org/
https://anaconda.com/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

If you’re on a managed system, you may need to ask your system administrator to
install Python 3.11 for you.

Next, confirm that it’s properly installed by opening Windows PowerShell and star!ng
Python 3.11 from the command-line. Use the Windows taskbar search box or Start
Menu to launch Windows PowerShell, then type python3.11 and press Enter.

 Note

If you installed Python from h%ps://python.org/ or using Anaconda or Miniconda,
the command you enter may be python3 or even simply python instead of
python3.11 .

 Tip

If entering the python3 or python commands opens the Microso# Store instead,
you may need to turn off “applica!on execu!on aliases”. To do so, open the Se$ngs
app, choose Apps → Advanced App Se$ngs → App Execu!on Aliases. In this list,
look for “App Installer python.exe ” and “App Installer python3.exe ” and slide both
switches to “off”.

Once you see Python’s >>> prompt, press CTRL+Z then press Enter to exit Python.

Creating the “Virtual Environment”

Python supports the no!on of “virtual environments”, which are small installa!ons of
Python that are isolated from the system’s installa!on. This enables you to install
so#ware for different Python applica!ons without interfering dependencies or conflicts.
We recommend crea!ng a virtual environment for the Deep Archive so#ware.

To do so, open Windows PowerShell (as above) and at the prompt, type the following
command (then press Enter):

python3.11 -m venv pds

 Note

https://python.org/

If you installed Python from h%ps://python.org/ or using Anaconda or Miniconda,
you may need to replace python3.11 with python3 or even simply python .

This will create a subfolder in the current directory called pds which contains the
virtual environment. Next, you’ll need to “ac!vate” the virtual environment by entering
the following command (then press Enter):

.\pds\Scripts\activate.ps1

Your PowerShell prompt will change to show (pds) at the front, indica!ng that the
virtual environment is now ac!ve.

Installing LXML 4.9.0

Because the Deep Archive manipulates and parses XML files, the “LXML” API for
Python must now be installed into the virtual environment. In the same Windows
PowerShell with the (pds) prompt, enter the following command (then press Enter):

pip install https://download.lfd.uci.edu/pythonlibs/archived/lxml-4.9.0-cp311-
cp311-win_amd64.whl

This will download and install LXML version 4.9.0 for Python 3.11 for 64-bit Intel/AMD
processors for Windows.

Installing PDS Deep Archive

Finally, you can install the PDS Deep Archive. As of this wri!ng, version 1.5.0 or later is
recommended for Windows. To install it, enter the following command in the same
Windows PowerShell with the (pds) prompt (then press Enter):

pip install pds.deeparchive~=1.5.0

Feel free to change the version number in the command as needed.

https://python.org/

You can then run pds-deep-archive --help or pds-deep-registry-archive --help to get
a usage message and ensure it’s properly installed.

Upgrading the Software

To check and install an upgrade to the so#ware, run the following command in your
virtual environment (on Unix and Unix-like systems):

source $HOME/.virtualenvs/pds-deep-archive/bin/activate
pip install --upgrade pds.deeparchive

Or on Windows in PowerShell:

.\pds\Scripts\activate.ps1
pip install --upgrade pds.deeparchive

 Note

The same admoni!ons men!oned earlier about command line invoca!ons also apply
to the above examples.

