-
Notifications
You must be signed in to change notification settings - Fork 20
/
utils_convert_tfrecords.py
257 lines (207 loc) · 8.96 KB
/
utils_convert_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""
This code was modified on top of Google tensorflow
(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
This code works similar to `label-maker package` when used with Label Maker and Tensor Flow object detection API.
To create a correct training data set for Tensor Flow Object Detection, we recommend you:
1. After running `label-maker images`, do `git clone https://github.com/tensorflow/models.git`
2. Install TensorFlow object detection by following this: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
author: @developmentseed
usage:
folder=asia_p1
python3 utils_convert_tfrecords.py \
--label_input=$folder/labels.npz \
--data_dir=tf_records \
--tiles_dir=$folder/tiles \
--pbtxt=classes.pbtxt
"""
import os
import io
import glob
import numpy as np
from os import makedirs, path as op
import shutil
import pandas as pd
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple
from object_detection.utils import label_map_util
label_map_util.tf = tf.compat.v1
tf.gfile = tf.io.gfile
flags = tf.app.flags
flags.DEFINE_string('label_input', '', 'Path to the labels.npz input')
flags.DEFINE_string('data_dir', '', 'Directory to write tfrecords into')
flags.DEFINE_string('tiles_dir', '', 'Path to tiles dir that corresponds with labels.npz')
flags.DEFINE_string('pbtxt', '', 'Path to pbtxt of TF object detection')
flags.DEFINE_list('split_names', 'train, test, val', 'List of names for data set to be divided into')
flags.DEFINE_list('split_vals', '1.0, 0, 0', 'List of ratios for data set to be divided into')
flags.DEFINE_string('record_name', '', 'TFrecord output prefix')
FLAGS = flags.FLAGS
def class_text_to_int(pbtxt):
labels = label_map_util.create_category_index_from_labelmap(
pbtxt, use_display_name=True)
return labels
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def _move_files(df, tile_path, des_dir):
for tile in df['filename']:
tile_ = op.join(tile_path, tile)
if op.exists(tile_):
shutil.copy(tile_, op.join(des_dir,tile))
def remove_blank_tiles(labels, tiles_dir):
removed_tiles = []
tile_names = [tile for tile in labels.files]
tile_names.sort()
for tile_nm in tile_names:
f_nm = op.basename(tile_nm)
img= op.join(tiles_dir, f'{f_nm}.jpg')
if not op.exists(img):
removed_tiles.append(f_nm)
print(f"{len(removed_tiles)} tiles will be removed!")
return removed_tiles
def _diff(lst1, lst2):
return list(set(lst1) - set(lst2))
def create_tf_example(group, path):
"""Creates a tf.Example proto from sample tower image tile.
Args:
encoded tower_image_data: The jpg/png encoded data of the tower image.
Returns:
example: The created tf.Example.
"""
with tf.gfile.GFile(op.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = 'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for _, row in group.object.iterrows():
#normalize the bbox
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(int(row['class_id']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format.encode('utf8')),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
labels = np.load(FLAGS.label_input)
tiles_dir =FLAGS.tiles_dir
tile_names = glob.glob(FLAGS.tiles_dir+'/*.jpg')
print(f'we have total {len(tile_names)} tiles')
#removed_tiles = remove_blank_tiles(labels, tiles_dir)
tile_names.sort()
tiles = np.array(tile_names)
region = FLAGS.label_input.split("/")[2]
tf_tiles_info = []
cl= class_text_to_int(FLAGS.pbtxt)
cl_id_dict = {1:1}
for tile in tiles:
tile = op.basename(tile)
tile = tile[:-4]
bboxes = labels[tile].tolist()
width, height = 256, 256
if bboxes:
for bbox in bboxes:
cl_id = int(bbox[4])
if cl_id in [1]:
cl_id=cl_id_dict[cl_id]
cl_str ='marine_debris'
print(cl_id, cl_str)
bbox = [max(0, min(255, x)) for x in bbox[0:4]]
y = [f'{tile}.jpg', width, height, cl_str, cl_id, bbox[0], bbox[1], bbox[2], bbox[3]]
tf_tiles_info.append(y)
#split_vals_l = [.7, .2, .1]
split_vals_l = [1, 0, 0]
split_n_samps = [len(tf_tiles_info) * float(val) for val in split_vals_l] #FLAGS.split_vals]
split_inds = np.cumsum(split_n_samps).astype(np.integer)
column_name = ['filename', 'width', 'height', 'class', 'class_id', 'xmin', 'ymin', 'xmax', 'ymax']
df = pd.DataFrame(tf_tiles_info, columns=column_name)
# shuffle the dataframe
df = df.sample(frac=1)
print(df.head(20))
df_filesnames = df.filename.unique()
first_filename = df_filesnames[0]
final_filename = df_filesnames[-1]
print("first_filename: ", first_filename)
print("final_filename: ", final_filename)
train_df = df[df.filename != first_filename]
train_df = train_df[train_df.filename != final_filename]
val_df = df.loc[df['filename'] == first_filename]
test_df = df.loc[df['filename'] == final_filename]
split_dfs = np.split(df, split_inds[:-1])
#train_df = split_dfs[0]
print('train samples {}'.format(train_df.shape[0]))
#test_df = split_dfs[1]
print('test samples {}'.format(test_df.shape[0]))
#val_df = split_dfs[2]
print('val samples {}'.format(val_df.shape[0]))
### saving for training data stats
train_df.to_csv(f'{FLAGS.data_dir}'+'/'+f'{FLAGS.record_name}_train.csv')
test_df.to_csv(f'{FLAGS.data_dir}'+'/'+f'{FLAGS.record_name}_test.csv')
val_df.to_csv(f'{FLAGS.data_dir}'+'/'+f'{FLAGS.record_name}_val.csv')
train_dir = op.join(FLAGS.tiles_dir, 'train')
test_dir = op.join(FLAGS.tiles_dir, 'test')
val_dir = op.join(FLAGS.tiles_dir, 'val')
dir_list = [train_dir, test_dir, val_dir]
tile_path = FLAGS.tiles_dir
for d in dir_list:
if not op.isdir(d):
makedirs(d)
#move train images
_move_files(train_df, tile_path, d)
# move test images
_move_files(test_df, tile_path, d)
# move validation images
_move_files(val_df, tile_path, d)
# train TFRecords Creation
writer = tf.python_io.TFRecordWriter(f'{FLAGS.data_dir}'+'/'+f'{FLAGS.record_name}_train.records')
grouped = split(train_df, 'filename')
print("Train grouped: ", len(grouped))
for group in grouped:
tf_example = create_tf_example(group, train_dir)
writer.write(tf_example.SerializeToString())
writer.close()
print('Successfully created train tf records.')
# Test TFRecords Creation
writer = tf.python_io.TFRecordWriter(f'{FLAGS.data_dir}'+'/'+f'{FLAGS.record_name}_test.records')
grouped = split(test_df, 'filename')
print("Test grouped: ", len(grouped))
for group in grouped:
tf_example = create_tf_example(group, test_dir)
writer.write(tf_example.SerializeToString())
writer.close()
print('Successfully created test tf records.' )
# Val TFRecords Creation
writer = tf.python_io.TFRecordWriter(f'{FLAGS.data_dir}'+'/'+f'{FLAGS.record_name}_val.records')
grouped = split(val_df, 'filename')
print("Val grouped: ", len(grouped))
for group in grouped:
tf_example = create_tf_example(group, val_dir)
writer.write(tf_example.SerializeToString())
writer.close()
print('Successfully created val tf records.')
if __name__ == '__main__':
tf.app.run()