forked from harvardnlp/regulatory-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
121 lines (102 loc) · 5.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
import tensorflow as tf
import sys
import gc
import time
from util import training_minibatcher, get_consistent_filename
from models import get_model
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-bp", "--base_path",
help="The base path of the directory",
default="/n/rush_lab/data/chromatin-features/chromatin-nn/")
parser.add_argument("-ckpt_bp", "--ckpt_base_path",
help="The base path of the large ckpt files directory",
default="/n/regal/rush_lab/ankitgupta/chromatin-nn/ckpt/")
parser.add_argument("-summary_bp", "--summary_base_path",
help="The base path of the large summary files directory",
default="/n/regal/rush_lab/ankitgupta/chromatin-nn/summary_logs/")
parser.add_argument("-m", "--model", help="The model to run",
default="dilated")
parser.add_argument("-b", "--batch_size", type=int, help="The batch size", default=8)
parser.add_argument("--num_outputs", type=int, help="Number of outputs", default=919)
parser.add_argument("-e", "--epochs", type=int, help="Number of epochs", default=1)
parser.add_argument("-d", "--dropout", type=float, help="Dropout keep prob", default=.75)
parser.add_argument("-l", "--learning_rate", type=float, help="Dropout keep prob", default=.001)
parser.add_argument("-w", "--pos_weight", type=float, help="Weight to assign positive class", default=1.0)
parser.add_argument("-bd", "--batch_decay", type=float, help="Batch normalization decay rate", default=.9)
parser.add_argument("-v", "--version", type=int, help="Naming version", default=4)
parser.add_argument("-kw", "--kw", type=int, help="Kernel width", default=10)
parser.add_argument("-w1", "--w1", type=int, help="Weight shape 1", default=128)
parser.add_argument("-w2", "--w2", type=int, help="Weight shape 2", default=240)
parser.add_argument("-w3", "--w3", type=int, help="Weight shape 3", default=50)
parser.add_argument("-hid", "--hidden", type=int, help="Hidden layer size", default=125)
parser.add_argument("suffix",
help="String to append to name in checkpoints (make this unique or it will overwrite)")
args = parser.parse_args()
model = args.model
base_path = args.base_path
batch_size = args.batch_size
noutputs = args.num_outputs
decay_rate = args.batch_decay
print(args)
x = tf.placeholder(tf.int32, shape=[None, 25000])
y_ = tf.placeholder(tf.float32, shape=[None, noutputs])
dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
is_training = tf.placeholder(tf.bool, name="is_training")
print("Making the model")
sys.stdout.flush()
outputs, W,b, embed, activations = get_model(model, x, y_, dropout_keep_prob, batch_size, noutputs, is_training, decay_rate, args.kw, [args.w1, args.w2, args.w3], args.hidden)
cross_entropy = None
if isinstance(outputs, list):
num_outputs = len(outputs)
cross_entropy = tf.divide(tf.add_n([tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(y_, output, args.pos_weight)) for output in outputs]), num_outputs)
else:
cross_entropy = tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(y_, outputs, args.pos_weight))
train_step = tf.train.AdamOptimizer(args.learning_rate).minimize(cross_entropy)
tf.summary.scalar("cross_entropy", cross_entropy)
merged = tf.summary.merge_all()
init_op = tf.initialize_all_variables()
saver = tf.train.Saver()
config = tf.ConfigProto()
ckpt_name = args.ckpt_base_path + get_consistent_filename(args, version=args.version) + ".ckpt"
print "Checkpoint file name will be", ckpt_name
sys.stdout.flush()
with tf.Session(config=config) as sess:
train_writer = tf.summary.FileWriter(args.summary_base_path + args.suffix + "/" + get_consistent_filename(args, version=args.version), sess.graph)
sess.run(init_op)
print("Beginning the forward pass")
sys.stdout.flush()
total_counter = 0
for epoch in xrange(args.epochs):
counter = 0
for inps, outs in training_minibatcher(batch_size, small_dataset=False, base_path=base_path):
# If the batch is too small, move on (only happens to the last one)
if inps.shape[0] != batch_size:
continue
got_batch = time.time()
# Get the outputs in a good format
for elem in range(len(outs)):
outs[elem] = outs[elem].toarray()
outs = np.vstack(outs)
configured_batch = time.time()
# Update the parameters
sess.run(train_step, feed_dict={x:inps, y_:outs, dropout_keep_prob:args.dropout, is_training:True})
ran_update = time.time()
sys.stdout.flush()
# Occasionally, print some stats, and save a checkpoint of the model
if counter % 25 == 0:
summary, loss_val = sess.run([merged, cross_entropy], feed_dict={x:inps, y_:outs, dropout_keep_prob:args.dropout, is_training:True})
print "Epoch:", epoch, "Batch:", counter, "Loss: ", loss_val
print "Configuring batch Time (sec):", configured_batch - got_batch, "Running update Time (sec):", ran_update - configured_batch
train_writer.add_summary(summary, total_counter)
sys.stdout.flush()
save_path = saver.save(sess, ckpt_name)
#print("Model saved in file: %s" % save_path)
del inps
del outs
gc.collect()
counter += 1
total_counter += 1
# At the end, make sure to save the model
save_path = saver.save(sess, ckpt_name)