-
Notifications
You must be signed in to change notification settings - Fork 0
/
PSO.py
95 lines (83 loc) · 3.63 KB
/
PSO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# !usr/bin/env python
# -*- coding: utf-8 -*-
# Time : 2021/12/15 15:57
# @Author : LucXiong
# @Project : Model
# @File : PSO.py
"""
Ref:https://github.com/guofei9987/scikit-opt
已经有了很多可以调用粒子群算法的库,但是在高维情形下的寻优效果很差,所以决定自己再写一个
"""
import numpy as np
import matplotlib.pyplot as plt
import math
import test_function
class PSO():
def __init__(self, func, n_dim=None, pop=40, max_iter=150, lb=-1e5, ub=1e5, w=0.8, c1=0.5, c2=0.5):
self.func = func
self.w = w # inertia
self.cp, self.cg = c1, c2 # parameters to control personal best, global best respectively
self.pop = pop # number of particles
self.n_dim = n_dim # dimension of particles, which is the number of variables of func
self.max_iter = max_iter # max iter
self.lb, self.ub = np.array(lb) * np.ones(self.n_dim), np.array(ub) * np.ones(self.n_dim)
assert self.n_dim == len(self.lb) == len(self.ub), 'dim == len(lb) == len(ub) is not True'
assert np.all(self.ub > self.lb), 'upper-bound must be greater than lower-bound'
self.X = np.random.uniform(low=self.lb, high=self.ub, size=(self.pop, self.n_dim))
v_high = self.ub - self.lb
self.V = np.random.uniform(low=-v_high, high=v_high, size=(self.pop, self.n_dim)) # speed of particles
self.Y = [self.func(self.X[i]) for i in range(len(self.X))] # y = f(x) for all particles
self.pbest_x = self.X.copy() # personal best location of every particle in history
self.pbest_y = [np.inf for i in range(self.pop)] # best image of every particle in history
self.gbest_x = self.pbest_x.mean(axis=0).reshape(1, -1) # global best location for all particles
self.gbest_y = np.inf # global best y for all particles
self.gbest_y_hist = [] # gbest_y of every iteration
self.update_gbest()
def update_pbest(self):
'''
personal best
:return:
'''
for i in range(len(self.Y)):
if self.pbest_y[i] > self.Y[i]:
self.pbest_x[i] = self.X[i]
self.pbest_y[i] = self.Y[i]
def update_gbest(self):
'''
global best
:return:
'''
idx_min = self.pbest_y.index(min(self.pbest_y))
if self.gbest_y > self.pbest_y[idx_min]:
self.gbest_x = self.X[idx_min, :].copy()
self.gbest_y = self.pbest_y[idx_min]
def update_V(self):
r1 = np.random.rand(self.pop, self.n_dim)
r2 = np.random.rand(self.pop, self.n_dim)
self.V = self.w * self.V + self.cp * r1 * (self.pbest_x - self.X) + self.cg * r2 * (self.gbest_x - self.X)
def update(self):
for i in range(self.pop):
self.X[i] += self.V[i]
self.X = np.clip(self.X, self.lb, self.ub)
self.Y = [self.func(self.X[i]) for i in range(len(self.X))]
def run(self):
for iter_no in range(self.max_iter):
self.update_V()
self.update()
self.update_pbest()
self.update_gbest()
self.gbest_y_hist.append(self.gbest_y)
self.best_x, self.best_y = self.gbest_x, self.gbest_y
return self.best_x, self.best_y
if __name__ == '__main__':
n_dim = 30
lb = [-100 for i in range(n_dim)]
ub = [100 for i in range(n_dim)]
demo_func = test_function.fu2
pop_size = 100
max_iter = 1000
pso = PSO(func=demo_func, n_dim=n_dim, pop=100, max_iter=1000, lb=lb, ub=ub, w=0.8, c1=0.5, c2=0.5)
best_x, bext_y = pso.run()
print(f'{demo_func(pso.gbest_x)}\t{pso.gbest_x}')
# plt.plot(pso.gbest_y_hist)
# plt.show()