forked from locuslab/stable_dynamics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lstm.py
executable file
·139 lines (107 loc) · 4.66 KB
/
train_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python3
import argparse
import datetime
import glob
import os
import random
import sys
from collections import defaultdict
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from datasets import pendulum
from torch import nn, optim, tensor
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from util import DynamicLoad, setup_logging, to_variable
logger = setup_logging(os.path.basename(__file__))
def trajectory_physics(number, n, steps):
physics = pendulum.pendulum_gradient(n)
h = 0.01 # Timestep
cache_path = Path("pendulum-cache") / f"p-lstmtraj-{n}.npy"
if not cache_path.exists():
logger.info(f"Generating trajectories for {cache_path}")
# Initialize args.number initial positions:
X_init = np.zeros((number, 2*n)).astype(np.float32)
X_init[:,:] = (np.random.rand(number, 2*n).astype(np.float32) - 0.5) * np.pi/2 # Pick values in range [-pi/4, pi/4] radians, radians/sec
X_phy = np.zeros((steps, *X_init.shape), dtype=np.float32)
X_grad = np.zeros((steps, *X_init.shape), dtype=np.float32)
X_phy[0,...] = X_init
X_grad[0,...] = physics(X_init)
for i in range(1, steps):
logger.info(f"Timestep {i}")
k1 = h * physics(X_phy[i-1,...])
k2 = h * physics(X_phy[i-1,...] + k1/2)
k3 = h * physics(X_phy[i-1,...] + k2/2)
k4 = h * physics(X_phy[i-1,...] + k3)
X_phy[i,...] = X_phy[i-1,...] + 1/6*(k1 + 2*k2 + 2*k3 + k4)
X_grad[i,...] = physics(X_phy[i,...])
assert not np.any(np.isnan(X_phy[i,...]))
np.save(cache_path, (X_phy, X_grad))
logger.info(f"Done generating trajectories for {cache_path}")
else:
X_phy, X_grad = np.load(cache_path).astype(np.float32)
logger.info(f"Loaded trajectories from {cache_path}. {X_phy.shape}, {X_grad.shape}")
return X_phy, X_grad
N = 8
STEPS = 50
TRAJECTORIES = 32
class LSTMModel(nn.Module):
def __init__(self, embedding_dim, hidden_dim=116):
super().__init__()
self.hidden_dim = hidden_dim
# The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.
self.enc = nn.Sequential(nn.Linear(embedding_dim, hidden_dim), nn.ReLU())
self.lstm = nn.LSTM(hidden_dim, hidden_dim)
self.dec = nn.Sequential(nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, embedding_dim))
def forward(self, x, hidden):
x = self.enc(x)
x, hidden = self.lstm(x, hidden)
return self.dec(x), hidden
def main(args):
hidden_dim = 116
N = args.links
model = LSTMModel(2*N, hidden_dim)
X_phy, X_grad = trajectory_physics(TRAJECTORIES, N, STEPS)
X_phy = tensor(X_phy)
X_grad = tensor(X_grad)
# TODO: Flag to disable CUDA
if torch.cuda.is_available():
model.cuda()
X_phy = X_phy.cuda()
X_grad = X_grad.cuda()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
for epoch in range(1, args.epochs + 1):
model.train()
loss_parts = []
hiddens = None
for timestep in range(X_phy.shape[0]):
optimizer.zero_grad()
y, new_hiddens = model(X_phy[timestep,...].unsqueeze(0), hiddens)
hiddens = tuple(d.detach() for d in new_hiddens)
loss = torch.sum((y - X_grad[timestep,...])**2)
loss_parts.append(loss.cpu().item())
loss.backward()
optimizer.step()
epoch_loss = sum(loss_parts) / X_phy.shape[0]
print(f"TRAIN\t{epoch}\t{epoch_loss}")
if epoch % args.save_every == 0 or epoch == args.epochs:
torch.save(model.state_dict(), args.weights.format(epoch=epoch))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train a VAE on a set of videos, fine-tune it on a single video, and generate the decoder.')
parser.set_defaults(func=lambda *a: parser.print_help())
parser.add_argument('weights', type=str, help='save model weights')
parser.add_argument('--links', type=int, default=8, help="number of links")
parser.add_argument('--log-to', type=str, help='log destination within runs/')
parser.add_argument('--learning-rate', type=float, default=5 e-4, help='learning rate')
parser.add_argument('--epochs', type=int, default=500, help='number of epochs to run')
parser.add_argument('--save-every', type=int, default=100, help='save after this many epochs')
parser.set_defaults(func=main)
try:
args = parser.parse_args()
main(args)
except:
raise