forked from Harryi0/dyrep_torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dyrepHawkes.py
499 lines (427 loc) · 26.6 KB
/
dyrepHawkes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import numpy as np
import torch
from datetime import datetime, timedelta
from torch.nn import Linear, ModuleList, Parameter
class DyRepHawkes(torch.nn.Module):
def __init__(self, num_nodes, hidden_dim, random_state, first_date, end_datetime, num_neg_samples= 5, num_time_samples = 10,
device='cpu', all_comms=False, train_td_max=None):
super(DyRepHawkes, self).__init__()
self.batch_update = True
self.hawkes = True
self.bipartite = False
self.all_comms = all_comms
self.include_link_features = False
self.num_nodes = num_nodes
self.hidden_dim = hidden_dim
self.random_state = random_state
self.first_date = first_date
self.end_datetime = end_datetime
self.num_neg_samples = num_neg_samples
self.device = device
self.num_time_samples = num_time_samples
self.train_td_max = train_td_max
self.n_assoc_types = 1
self.w_t = Parameter(0.5*torch.ones(2))
self.alpha = Parameter(0.5*torch.ones(2))
# TODO: TB we bring bias term to the linear layer by using Linear (set bias=False to exempt or directly use parameter)
if not self.include_link_features:
self.omega = ModuleList([Linear(in_features=2*hidden_dim, out_features=1),
Linear(in_features=2*hidden_dim, out_features=1)])
else:
self.omega = ModuleList([Linear(in_features=2*hidden_dim+172, out_features=1),
Linear(in_features=2*hidden_dim+172, out_features=1)])
self.psi = Parameter(0.5*torch.ones(2)) # type=2: assoc + comm
self.W_h = Linear(in_features=hidden_dim, out_features=hidden_dim)
self.W_struct = Linear(in_features=hidden_dim*self.n_assoc_types, out_features=hidden_dim)
self.W_rec = Linear(in_features=hidden_dim, out_features=hidden_dim)
self.W_t = Linear(4,hidden_dim) # [days, hours, minutes, seconds]
self.reset_parameters()
def reset_parameters(self):
for module in self.modules():
if isinstance(module, Linear):
module.reset_parameters()
def reset_state(self, node_embeddings_initial, A_initial, node_degree_initial, time_bar, resetS=False):
z = np.pad(node_embeddings_initial, ((0, 0), (0, self.hidden_dim - node_embeddings_initial.shape[1])),'constant')
z = torch.from_numpy(z).float().to(self.device)
A = torch.from_numpy(A_initial).float().to(self.device)
if len(A.shape) == 2:
A = A.unsqueeze(2)
self.register_buffer('z', z)
self.register_buffer('A', A)
self.node_degree_global = node_degree_initial
self.time_bar = time_bar
## TODO: Current implementation, initialize S for each epoch
self.initialize_S_from_A()
assert torch.sum(torch.isnan(A)) == 0, (torch.sum(torch.isnan(A)), A)
self.Lambda_dict = torch.zeros(5000, device=self.device)
self.time_keys = []
def initialize_S_from_A(self):
S = self.A.new_zeros((self.num_nodes, self.num_nodes, self.n_assoc_types))
for at in range(self.n_assoc_types):
D = torch.sum(self.A[:,:,at], dim=1)
for v in torch.nonzero(D, as_tuple=False):
u = torch.nonzero(self.A[v,:,at].squeeze(), as_tuple=False)
S[v,u,at] = 1. / D[v]
self.S = S
# Check that values in each row of S add up to 1
for rel in range(self.n_assoc_types):
S = self.S[:, :, rel]
assert torch.sum(S[self.A[:, :, rel] == 0]) < 1e-5, torch.sum(S[self.A[:, :, rel] == 0])
def forward(self, data):
# TODO: change the order and change variable names with the dataloader
u, v, time_diff, event_types, t_bar, t = data[:6]
batch_size = len(u)
u_all, v_all = u.data.cpu().numpy(), v.data.cpu().numpy()
A_pred, surv, lambda_pred = None, None, None
if not self.training:
A_pred = self.A.new_zeros((batch_size, self.num_nodes, self.num_nodes))
surv = self.A.new_zeros((batch_size, self.num_nodes, self.num_nodes))
time_mean = torch.from_numpy(np.array([0, 0, 0, 0])).float().to(self.device).view(1, 1, 4)
time_sd = torch.from_numpy(np.array([50, 7, 15, 15])).float().to(self.device).view(1, 1, 4)
time_diff = (time_diff - time_mean) / time_sd
# TODO: implement the batch update version
lambda_uv, lambda_uv_neg = [], []
# for batch update
batch_embeddings_u, batch_embeddings_v, batch_embeddings_u_neg, batch_embeddings_v_neg = [], [], [], []
ts_diff_neg = []
node_degrees = []
z_all = []
expected_time = []
# update_node_degrees = []
compare_embeddings_u_neg, compare_embeddings_v_neg = [], []
for it in range(batch_size):
u_it, v_it, et_it, td_it = u_all[it], v_all[it], event_types[it], time_diff[it]
### TODO: remove iterate the number of assoc types (assume it to always=1)
### TODO: [optimize for Jodie] Buffer the z in a list before writing it to self.z might could improve the speed?
z_prev = self.z if it == 0 else z_all[it - 1]
## 1. compute intensity lambda based on the most recent node embedding
if self.batch_update:
batch_embeddings_u.append(z_prev[u_it])
batch_embeddings_v.append(z_prev[v_it])
else:
lambda_uv_it = self.compute_intensity_lambda(z_prev[u_it], z_prev[v_it], et_it)
lambda_uv.append(lambda_uv_it)
## 2. compute new node embeddings
z_new = self.update_node_embedding(z_prev, u_it, v_it, td_it)
# if self.batch_update: node_degrees.append(node_degree)
assert torch.sum(torch.isnan(z_new)) == 0, (torch.sum(torch.isnan(z_new)), z_new, it)
# update_node_degrees.append(update_node_degree)
if not self.batch_update:
## 3. update S and A
self.update_A_S(u_it, v_it, et_it, lambda_uv_it)
### update the global node degree
for j in [u_it, v_it]:
for at in range(self.n_assoc_types):
# self code
self.node_degree_global[at][j] = torch.sum(self.A[j, :, at]>0).item()
# self.node_degree_global[at][j] = node_degree[j][at]
## 4. compute lambda for sampled events that do not happen -> to compute survival probability in loss
# uv_others = self.random_state.choice(np.delete(np.arange(self.num_nodes), [u_it, v_it]),
# size=self.num_neg_samples * 2, replace=False)
# for q in range(self.num_neg_samples):
# assert u_it != uv_others[q], (u_it, uv_others[q])
# assert v_it != uv_others[self.num_neg_samples + q], (v_it, uv_others[self.num_neg_samples + q])
# if self.batch_update:
# batch_embeddings_u_neg.extend([z_prev[u_it], z_prev[uv_others[self.num_neg_samples + q]]])
# batch_embeddings_v_neg.extend([z_prev[uv_others[q]], z_prev[v_it]])
# #######self code
# u_all_node, v_all_node = np.unique(u_all), np.unique(v_all)
# u_it_idx, v_it_idx = np.where(u_all_node == u_it), np.where(v_all_node == v_it)
#
# batch_nodes = np.union1d(np.delete(u_all_node, u_it_idx), np.delete(v_all_node, v_it_idx))
# batch_uv_neg = self.random_state.choice(batch_nodes, size=self.num_neg_samples * 2,
# replace=len(batch_nodes) < 2*self.num_neg_samples)
# batch_u_neg, batch_v_neg = batch_uv_neg[self.num_neg_samples:], batch_uv_neg[:self.num_neg_samples]
if self.bipartite:
all_nodes_u = np.delete(np.arange(self.min_src_idx, self.max_src_idx+1), u_it)
all_nodes_v = np.delete(np.arange(self.min_dst_idx, self.max_dst_idx+1), v_it-self.min_dst_idx)
batch_u_neg = self.random_state.choice(all_nodes_u, size=self.num_neg_samples,
replace=len(all_nodes_u) < self.num_neg_samples)
batch_v_neg = self.random_state.choice(all_nodes_v, size=self.num_neg_samples,
replace=len(all_nodes_v) < self.num_neg_samples)
else:
batch_nodes = np.delete(np.arange(self.num_nodes), [u_it, v_it])
batch_uv_neg = self.random_state.choice(batch_nodes, size=self.num_neg_samples * 2,
replace=len(batch_nodes) < 2*self.num_neg_samples)
batch_u_neg, batch_v_neg = batch_uv_neg[self.num_neg_samples:], batch_uv_neg[:self.num_neg_samples]
batch_embeddings_u_neg.append(torch.cat((z_prev[u_it].expand(self.num_neg_samples, -1),
z_prev[batch_u_neg]), dim=0))
batch_embeddings_v_neg.append(torch.cat([z_prev[batch_v_neg],
z_prev[v_it].expand(self.num_neg_samples, -1)], dim=0))
# batch_embeddings_u_neg.append(z_prev[u_it].expand(self.num_neg_samples, -1))
# batch_embeddings_v_neg.append(z_prev[batch_v_neg])
last_t_u_neg = t_bar[it, np.concatenate([[u_it] * self.num_neg_samples, batch_u_neg]), 0]
last_t_v_neg = t_bar[it, np.concatenate([batch_v_neg, [v_it] * self.num_neg_samples]), 0]
# last_t_u_neg = t_bar[it, [u_it] * self.num_neg_samples, 0]
# last_t_v_neg = t_bar[it, batch_v_neg, 0]
last_t_uv_neg = torch.cat([last_t_u_neg.view(-1,1), last_t_v_neg.view(-1,1)], dim=1).max(-1)[0].to(self.device)
ts_diff_neg.append(t[it] - last_t_uv_neg)
## 5. Compute conditional density for all possible pairs
with torch.no_grad():
z_uv_it = torch.cat((z_prev[u_it].detach().unsqueeze(0).expand(self.num_nodes,-1),
z_prev[v_it].detach().unsqueeze(0).expand(self.num_nodes, -1)), dim=0)
# two type of events: assoc + comm
if self.hawkes:
last_t_pred = torch.cat([
t_bar[it, [u_it, v_it], 0].unsqueeze(1).repeat(1, self.num_nodes).view(-1,1),
t_bar[it, :, 0].repeat(2).view(-1,1)], dim=1).max(-1)[0]
ts_diff_pred = t[it].repeat(2*self.num_nodes) - last_t_pred
lambda_uv_pred = self.compute_hawkes_lambda(z_uv_it, z_prev.detach().repeat(2,1),
et_it.repeat(len(z_uv_it)), ts_diff_pred).detach()
else:
lambda_uv_pred = self.compute_intensity_lambda(z_uv_it, z_prev.detach().repeat(2,1),
et_it.repeat(len(z_uv_it))).detach()
if not self.training:
A_pred[it, u_it, :] = lambda_uv_pred[:self.num_nodes]
A_pred[it, v_it, :] = lambda_uv_pred[self.num_nodes:]
assert torch.sum(torch.isnan(A_pred[it])) == 0, (it, torch.sum(torch.isnan(A_pred[it])))
s_u_v = self.compute_cond_density(u_it, v_it, t_bar[it])
surv[it, [u_it, v_it], :] = s_u_v
time_key = int(t[it])
idx = np.delete(np.arange(self.num_nodes), [u_it, v_it])
idx = np.concatenate((idx, idx+self.num_nodes))
#### if total length reach the limit, remove the oldest one
# TODO: Rename the sequence variable and set the length as a parameter (why 5000)
if len(self.time_keys) >= len(self.Lambda_dict):
time_keys = np.array(self.time_keys)
time_keys[:-1] = time_keys[1:]
self.time_keys = list(time_keys[:-1])
self.Lambda_dict[:-1] = self.Lambda_dict.clone()[1:]
self.Lambda_dict[-1] = 0
self.Lambda_dict[len(self.time_keys)] = lambda_uv_pred[idx].sum().detach()
self.time_keys.append(time_key)
# ###############For time prediction
if not self.training:
t_cur_date = datetime.fromtimestamp(int(t[it]))
# Use the cur and most recent time
t_prev = datetime.fromtimestamp(int(max(t_bar[it][u_it], t_bar[it][v_it])))
td = t_cur_date - t_prev
time_scale_hour = round((td.days*24 + td.seconds/3600),3)
surv_allsamples = z_new.new_zeros(self.num_time_samples)
factor_samples = 2*self.random_state.rand(self.num_time_samples)
sampled_time_scale = time_scale_hour*factor_samples
embeddings_u = z_new[u_it].expand(self.num_time_samples, -1)
embeddings_v = z_new[v_it].expand(self.num_time_samples, -1)
all_td_c = torch.zeros(self.num_time_samples)
t_c_n = torch.tensor(list(map(lambda x: int((t_cur_date+timedelta(hours=x)).timestamp()),
np.cumsum(sampled_time_scale)))).to(self.device)
all_td_c = t_c_n - t[it]
if self.bipartite:
u_neg_sample = self.random_state.choice(
all_nodes_u,
size=self.num_neg_samples*self.num_time_samples,
replace=len(all_nodes_u) < self.num_neg_samples*self.num_time_samples)
v_neg_sample = self.random_state.choice(
all_nodes_v,
size=self.num_neg_samples*self.num_time_samples,
replace=len(all_nodes_v) < self.num_neg_samples*self.num_time_samples)
else:
all_uv_neg_sample = self.random_state.choice(
batch_nodes,
size=self.num_neg_samples*2*self.num_time_samples,
replace=len(batch_nodes) < self.num_neg_samples*2*self.num_time_samples)
u_neg_sample = all_uv_neg_sample[:self.num_neg_samples*self.num_time_samples]
v_neg_sample = all_uv_neg_sample[self.num_neg_samples*self.num_time_samples:]
embeddings_u_neg = torch.cat((
z_new[u_it].view(1, -1).expand(self.num_neg_samples*self.num_time_samples, -1),
z_new[u_neg_sample]), dim=0).to(self.device)
embeddings_v_neg = torch.cat((
z_new[v_neg_sample],
z_new[v_it].view(1, -1).expand(self.num_neg_samples*self.num_time_samples, -1)), dim=0).to(self.device)
all_td_c_expand = all_td_c.unsqueeze(1).repeat(1,self.num_neg_samples).view(-1)
surv_0 = self.compute_hawkes_lambda(embeddings_u_neg, embeddings_v_neg,
torch.zeros(len(embeddings_u_neg)),
torch.cat([all_td_c_expand, all_td_c_expand]))
surv_1 = self.compute_hawkes_lambda(embeddings_u_neg, embeddings_v_neg,
torch.ones(len(embeddings_u_neg)),
torch.cat([all_td_c_expand, all_td_c_expand]))
surv_01 = (surv_0 + surv_1).view(-1,self.num_neg_samples).mean(dim=-1)
surv_allsamples = surv_01[:self.num_time_samples]+surv_01[self.num_time_samples:]
# for n in range(1, self.num_time_samples+1):
# t_c_n = int((t_cur_date + timedelta(hours=sum(sampled_time_scale[:n]))).timestamp())
# td_c = t_c_n - t[it]
# all_td_c[n - 1] = td_c
#
# batch_uv_neg_sample = self.random_state.choice(batch_nodes, size=self.num_neg_samples * 2,
# replace=len(batch_nodes) < 2 * self.num_neg_samples)
# u_neg_sample = batch_uv_neg_sample[self.num_neg_samples:]
# v_neg_sample = batch_uv_neg_sample[:self.num_neg_samples]
# embeddings_u_neg = torch.cat((z_new[u_it].view(1,-1).expand(self.num_neg_samples,-1),
# z_new[u_neg_sample]),dim=0)
# embeddings_v_neg = torch.cat([z_new[v_neg_sample],
# z_new[v_it].view(1,-1).expand(self.num_neg_samples,-1)],dim=0)
#
# surv_0 = self.compute_hawkes_lambda(embeddings_u_neg, embeddings_v_neg,
# torch.zeros(len(embeddings_u_neg)), td_c)
# surv_1 = self.compute_hawkes_lambda(embeddings_u_neg, embeddings_v_neg,
# torch.ones(len(embeddings_u_neg)), td_c)
#
# surv_allsamples[n-1] = (torch.sum(surv_0) + torch.sum(surv_1)) / self.num_neg_samples
lambda_t_allsamples = self.compute_hawkes_lambda(embeddings_u, embeddings_v,
torch.zeros(self.num_time_samples)+et_it,
all_td_c)
f_samples = lambda_t_allsamples*torch.exp(-surv_allsamples)
expectation = torch.from_numpy(np.cumsum(sampled_time_scale))*f_samples
expectation = expectation.sum()
expected_time.append(expectation/self.num_time_samples)
## 6. Update the embedding z
z_all.append(z_new)
self.z = z_new
#### batch update for all events' intensity
if self.batch_update:
batch_embeddings_u = torch.stack(batch_embeddings_u, dim=0)
batch_embeddings_v = torch.stack(batch_embeddings_v, dim=0)
if self.hawkes:
last_t_u = t_bar[torch.arange(batch_size), u_all, [0]*batch_size]
last_t_v = t_bar[torch.arange(batch_size), v_all, [0]*batch_size]
last_t_uv = torch.cat([last_t_u.view(-1,1), last_t_v.view(-1,1)], dim=1).max(-1)[0]
ts_diff = t.view(-1)-last_t_uv
lambda_uv = self.compute_hawkes_lambda(batch_embeddings_u, batch_embeddings_v, event_types, ts_diff)
else:
lambda_uv = self.compute_intensity_lambda(batch_embeddings_u, batch_embeddings_v, event_types)
for i,k in enumerate(event_types):
u_it, v_it = u_all[i], v_all[i]
self.update_A_S(u_it, v_it, k, lambda_uv[i].item())
for j in [u_it, v_it]:
for at in range(self.n_assoc_types):
self.node_degree_global[at][j] = torch.sum(self.A[j, :, at]>0).item()
else:
lambda_uv = torch.cat(lambda_uv, dim=0)
batch_embeddings_u_neg = torch.cat(batch_embeddings_u_neg, dim=0)
batch_embeddings_v_neg = torch.cat(batch_embeddings_v_neg, dim=0)
neg_events_len = len(batch_embeddings_u_neg)
lambda_uv_neg = torch.zeros(neg_events_len * 2, device=self.device)
if self.hawkes:
ts_diff_neg = torch.cat(ts_diff_neg)
lambda_uv_neg[:neg_events_len] = self.compute_hawkes_lambda(batch_embeddings_u_neg, batch_embeddings_v_neg,
torch.zeros(neg_events_len), ts_diff_neg)
lambda_uv_neg[neg_events_len:] = self.compute_hawkes_lambda(batch_embeddings_u_neg, batch_embeddings_v_neg,
torch.ones(neg_events_len), ts_diff_neg)
else:
lambda_uv_neg[:neg_events_len] = self.compute_intensity_lambda(batch_embeddings_u_neg, batch_embeddings_v_neg,
torch.zeros(neg_events_len))
lambda_uv_neg[neg_events_len:] = self.compute_intensity_lambda(batch_embeddings_u_neg, batch_embeddings_v_neg,
torch.ones(neg_events_len))
# lambda_uv_neg = torch.cat(lambda_uv_neg, dim=0) / self.num_neg_samples
return lambda_uv, lambda_uv_neg / self.num_neg_samples, A_pred, surv, expected_time
# return lambda_uv, lambda_uv_neg, A_pred, surv, expected_time
def compute_hawkes_lambda(self, z_u, z_v, et_uv, td):
z_u = z_u.view(-1, self.hidden_dim)
z_v = z_v.view(-1, self.hidden_dim)
z_cat = torch.cat((z_u, z_v), dim=1)
et = (et_uv>0).long()
g = z_cat.new_zeros(len(z_cat))
# Total two types of events
for k in range(2):
idx = (et==k)
if torch.sum(idx)>0:
g[idx] = self.omega[k](z_cat).flatten()[idx]
psi = self.psi[et]
alpha = self.alpha[et]
w_t = self.w_t[et]
g_psi = g / (psi + 1e-7)
# g_psi = torch.clamp(g/(psi + 1e-7), -75, 75) # avoid overflow
Lambda = psi * torch.log(1 + torch.exp(g_psi)) + alpha*torch.exp(-w_t*(td/self.train_td_max))
return Lambda
def compute_intensity_lambda(self, z_u, z_v, et_uv):
###################################
z_u = z_u.view(-1, self.hidden_dim)
z_v = z_v.view(-1, self.hidden_dim)
z_cat = torch.cat((z_u, z_v), dim=1)
et = (et_uv>0).long()
g = z_cat.new_zeros(len(z_cat))
# Total two types of events
for k in range(2):
idx = (et==k)
if torch.sum(idx)>0:
g[idx] = self.omega[k](z_cat).flatten()[idx]
psi = self.psi[et]
g_psi = torch.clamp(g/(psi + 1e-7), -75, 75) # avoid overflow
Lambda = psi * torch.log(1 + torch.exp(g_psi))
return Lambda
def update_node_embedding(self, prev_embedding, node_u, node_v, td):
z_new = prev_embedding.clone()
h_u_struct = prev_embedding.new_zeros((2, self.hidden_dim, self.n_assoc_types))# 2 -> update embedding for both u & v
for cnt, (v,u) in enumerate([(node_u, node_v), (node_v, node_u)]):
for at in range(self.n_assoc_types):
u_nb = self.A[u, :, at] > 0
num_u_nb = torch.sum(u_nb).item()
if num_u_nb > 0:
h_i_bar = self.W_h(prev_embedding[u_nb]).view(num_u_nb, self.hidden_dim)
q_ui = torch.exp(self.S[u, u_nb, at])
q_ui = q_ui / (torch.sum(q_ui) + 1e-7)
h_u_struct[cnt, :, at] = torch.max(torch.sigmoid(q_ui.view(-1,1)*h_i_bar), dim=0)[0]
z_new[[node_u, node_v]] = torch.sigmoid(self.W_struct(h_u_struct.view(2, self.hidden_dim*self.n_assoc_types)) + \
self.W_rec(prev_embedding[[node_u, node_v]]) + \
self.W_t(td).view(2, self.hidden_dim))
return z_new
def update_A_S(self, u_it, v_it, et_it, lambda_uv_t):
if self.all_comms:
self.A[u_it, v_it, 0] = self.A[v_it, u_it, 0] = 1
else:
if et_it <= 0:
self.A[u_it, v_it, np.abs(et_it)] = self.A[v_it, u_it, np.abs(et_it)] = 1
A = self.A
indices = torch.arange(self.num_nodes, device=self.device)
for k in range(self.n_assoc_types):
if (et_it>0) and (A[u_it, v_it, k]==0):
continue
else:
for j,i in [(u_it,v_it), (v_it, u_it)]:
y = self.S[j, :, k]
# TODO: check if this work (not use the node degree when compute embedding)
degree_j = torch.sum(A[j,:,k] > 0).item()
b = 0 if degree_j==0 else 1/(float(degree_j) + 1e-7)
if et_it>0 and A[j,i,k]==1:
y[i] = b + lambda_uv_t
elif k==0 and A[j,i,k]==1:
degree_j_bar = self.node_degree_global[k][j]
b_prime = 0 if degree_j_bar==0 else 1./(float(degree_j_bar) + 1e-7)
x = b_prime - b
y[i] = b + lambda_uv_t
w_idx = (y!=0) & (indices != int(i))
# w_idx[int(i)] = False
y[w_idx] = y[w_idx]-x
y /= (torch.sum(y)+ 1e-7)
self.S[j,:,k] = y
def compute_cond_density(self, u, v, time_bar):
N = self.num_nodes
s_uv = self.Lambda_dict.new_zeros((2, N))
# TODO: why divide normalize by the length of Lambda_dict
Lambda_sum = torch.cumsum(self.Lambda_dict.flip(0), 0).flip(0) / len(self.Lambda_dict)
time_keys_min = self.time_keys[0]
time_keys_max = self.time_keys[-1]
indices = []
l_indices = []
t_bar_min = torch.min(time_bar[[u, v]]).item()
if t_bar_min < time_keys_min:
start_ind_min = 0
elif t_bar_min > time_keys_max:
# it means t_bar will always be larger, so there is no history for these nodes
return s_uv
else:
start_ind_min = self.time_keys.index(int(t_bar_min))
# Most recent time between
max_pairs = torch.max(torch.cat((time_bar[[u, v]].view(1, 2).expand(N, -1).t().contiguous().view(2 * N, 1),
time_bar.repeat(2, 1)), dim=1), dim=1)[0].view(2, N).long().data.cpu().numpy() # 2,N
# compute cond density for all pairs of u and some i, then of v and some i
############### ???
for c, j in enumerate([u, v]): # range(i + 1, N):
for i in range(N):
if i == j:
continue
# most recent timestamp of either u or v
t_bar = max_pairs[c, i]
if t_bar < time_keys_min:
start_ind = 0 # it means t_bar is beyond the history we kept, so use maximum period saved
elif t_bar > time_keys_max:
continue # it means t_bar is current event, so there is no history for this pair of nodes
else:
# t_bar is somewhere in between time_keys_min and time_keys_min
start_ind = self.time_keys.index(t_bar, start_ind_min)
indices.append((c, i))
l_indices.append(start_ind)
indices = np.array(indices)
l_indices = np.array(l_indices)
s_uv[indices[:, 0], indices[:, 1]] = Lambda_sum[l_indices]
return s_uv