-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest.py
256 lines (219 loc) · 13.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import os
import argparse
import time
import shutil
import nibabel as nib
import csv
from monai.losses import DiceCELoss
from monai.data import load_decathlon_datalist, decollate_batch
from monai.transforms import AsDiscrete
from monai.metrics import DiceMetric
from monai.inferers import sliding_window_inference
from model.Universal_model import Universal_model
from dataset.dataloader_test import get_loader
from utils import loss
from utils.utils import dice_score, threshold_organ, visualize_label, merge_label, get_key, pseudo_label_all_organ, pseudo_label_single_organ, save_organ_label
from utils.utils import TEMPLATE, ORGAN_NAME, NUM_CLASS,ORGAN_NAME_LOW
from utils.utils import organ_post_process, threshold_organ,create_entropy_map,save_soft_pred,invert_transform
torch.multiprocessing.set_sharing_strategy('file_system')
def validation(model, ValLoader, val_transforms, args):
save_dir = args.save_dir
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
# os.makedirs(save_dir+'/predict')
model.eval()
dice_list = {}
for key in TEMPLATE.keys():
dice_list[key] = np.zeros((2, NUM_CLASS)) # 1st row for dice, 2nd row for count
for index, batch in enumerate(tqdm(ValLoader)):
# print('%d processd' % (index))
if args.original_label:
image, label, name_lbl,name_img = batch["image"].cuda(), batch["label"], batch["name_lbl"],batch["name_img"]
image_file_path = os.path.join(args.data_root_path,name_img[0] +'.nii.gz')
lbl_file_path = os.path.join(args.data_root_path,name_lbl[0] +'.nii.gz')
case_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1])
pseudo_label_save_path = os.path.join(case_save_path,'backbones',args.backbone)
if not os.path.isdir(pseudo_label_save_path):
os.makedirs(pseudo_label_save_path)
organ_seg_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1],'backbones',args.backbone,'segmentations')
organ_entropy_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1],'backbones',args.backbone,'entropy')
organ_soft_pred_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1],'backbones',args.backbone,'soft_pred')
destination_ct = os.path.join(case_save_path,'ct.nii.gz')
if not os.path.isfile(destination_ct):
shutil.copy(image_file_path, destination_ct)
print("Image File copied successfully.")
destination_lbl = os.path.join(case_save_path,'original_label.nii.gz')
if not os.path.isfile(destination_lbl):
shutil.copy(lbl_file_path, destination_lbl)
print("Label File copied successfully.")
affine_temp = nib.load(destination_ct).affine
print(image_file_path)
print(lbl_file_path)
print(image.shape)
print(name_img)
else:
image,name_img = batch["image"].cuda(),batch["name_img"]
image_file_path = os.path.join(args.data_root_path,name_img[0] +'.nii.gz')
case_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1])
pseudo_label_save_path = os.path.join(case_save_path,'backbones',args.backbone)
if not os.path.isdir(pseudo_label_save_path):
os.makedirs(pseudo_label_save_path)
organ_seg_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1],'backbones',args.backbone,'segmentations')
organ_entropy_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1],'backbones',args.backbone,'entropy')
organ_soft_pred_save_path = os.path.join(save_dir,name_img[0].split('/')[0],name_img[0].split('/')[-1],'backbones',args.backbone,'soft_pred')
print(image_file_path)
print(image.shape)
print(name_img)
destination_ct = os.path.join(case_save_path,'ct.nii.gz')
if not os.path.isfile(destination_ct):
shutil.copy(image_file_path, destination_ct)
print("Image File copied successfully.")
affine_temp = nib.load(destination_ct).affine
with torch.no_grad():
# with torch.autocast(device_type="cuda", dtype=torch.float16):
pred = sliding_window_inference(image, (args.roi_x, args.roi_y, args.roi_z), 1, model, overlap=0.75, mode='gaussian')
pred_sigmoid = F.sigmoid(pred)
#pred_hard = threshold_organ(pred_sigmoid, organ=args.threshold_organ, threshold=args.threshold)
pred_hard = threshold_organ(pred_sigmoid,args)
pred_hard = pred_hard.cpu()
torch.cuda.empty_cache()
B = pred_hard.shape[0]
for b in range(B):
organ_list_all = TEMPLATE['all'] # post processing all organ
pred_hard_post,total_anomly_slice_number = organ_post_process(pred_hard.numpy(), organ_list_all,case_save_path,args)
pred_hard_post = torch.tensor(pred_hard_post)
if args.store_result:
if not os.path.isdir(organ_seg_save_path):
os.makedirs(organ_seg_save_path)
organ_index_all = TEMPLATE['all']
for organ_index in organ_index_all:
pseudo_label_single = pseudo_label_single_organ(pred_hard_post,organ_index,args)
organ_name = ORGAN_NAME_LOW[organ_index-1]
batch[organ_name]=pseudo_label_single.cpu()
BATCH = invert_transform(organ_name,batch,val_transforms)
organ_invertd = np.squeeze(BATCH[0][organ_name].numpy(),axis = 0)
organ_save = nib.Nifti1Image(organ_invertd,affine_temp)
new_name = os.path.join(organ_seg_save_path, organ_name+'.nii.gz')
print('organ seg saved in path: %s'%(new_name))
nib.save(organ_save,new_name)
pseudo_label_all = pseudo_label_all_organ(pred_hard_post,args)
batch['pseudo_label'] = pseudo_label_all.cpu()
BATCH = invert_transform('pseudo_label',batch,val_transforms)
pseudo_label_invertd = np.squeeze(BATCH[0]['pseudo_label'].numpy(),axis = 0)
pseudo_label_save = nib.Nifti1Image(pseudo_label_invertd,affine_temp)
new_name = os.path.join(pseudo_label_save_path, 'pseudo_label.nii.gz')
nib.save(pseudo_label_save,new_name)
print('pseudo label saved in path: %s'%(new_name))
if args.store_entropy:
organ_index_target = TEMPLATE['target']
if not os.path.isdir(organ_entropy_save_path):
os.makedirs(organ_entropy_save_path)
for organ_idx in organ_index_target:
organ_entropy = create_entropy_map(pred_sigmoid,organ_idx)
organ_name_target = ORGAN_NAME_LOW[organ_idx-1]
batch[organ_name_target] = organ_entropy.cpu()
BATCH = invert_transform(organ_name_target,batch,val_transforms)
organ_invertd = np.squeeze(BATCH[0][organ_name_target].numpy(),axis = 0)*255
organ_save = nib.Nifti1Image(organ_invertd.astype(np.uint8),affine_temp)
new_name = os.path.join(organ_entropy_save_path, organ_name_target+'.nii.gz')
print('organ entropy saved in path: %s'%(new_name))
nib.save(organ_save,new_name)
if args.store_soft_pred:
organ_index_target = TEMPLATE['all']
if not os.path.isdir(organ_soft_pred_save_path):
os.makedirs(organ_soft_pred_save_path)
for organ_idx in organ_index_target:
organ_pred_soft_save = save_soft_pred(pred_sigmoid,pred_hard_post,organ_idx,args)
organ_name_target = ORGAN_NAME_LOW[organ_idx-1]
batch[organ_name_target] = organ_pred_soft_save.cpu()
BATCH = invert_transform(organ_name_target,batch,val_transforms)
organ_invertd = np.squeeze(BATCH[0][organ_name_target].numpy(),axis= 0)*255
organ_save = nib.Nifti1Image(organ_invertd.astype(np.uint8),affine_temp)
new_name = os.path.join(organ_soft_pred_save_path, organ_name_target+'.nii.gz')
print('organ soft pred saved in path: %s'%(new_name))
nib.save(organ_save,new_name)
torch.cuda.empty_cache()
def main():
parser = argparse.ArgumentParser()
## for distributed training
parser.add_argument('--dist', dest='dist', type=bool, default=False,
help='distributed training or not')
parser.add_argument("--local_rank", type=int)
parser.add_argument("--device")
parser.add_argument("--epoch", default=0,type = int)
## logging
parser.add_argument('--save_dir', default='Nvidia/old_fold0', help='The dataset save path')
## model load
parser.add_argument('--resume', default='./out/Nvidia/old_fold0/aepoch_500.pth', help='The path resume from checkpoint')
parser.add_argument('--pretrain', default='./pretrained_weights/swin_unetr.base_5000ep_f48_lr2e-4_pretrained.pt',
help='The path of pretrain model')
## hyperparameter
parser.add_argument('--max_epoch', default=1000, type=int, help='Number of training epoches')
parser.add_argument('--store_num', default=10, type=int, help='Store model how often')
parser.add_argument('--lr', default=1e-4, type=float, help='Learning rate')
parser.add_argument('--weight_decay', default=1e-5, type=float, help='Weight Decay')
## dataset
parser.add_argument('--dataset_list', nargs='+', default=['PAOT_123457891213', 'PAOT_10_inner']) # 'PAOT', 'felix'
### please check this argment carefully
### PAOT: include PAOT_123457891213 and PAOT_10
### PAOT_123457891213: include 1 2 3 4 5 7 8 9 12 13
### PAOT_10_inner: same with NVIDIA for comparison
### PAOT_10: original division
parser.add_argument('--data_root_path', default='/home/jliu288/data/whole_organ/', help='data root path')
parser.add_argument('--data_txt_path', default='./dataset/dataset_list/', help='data txt path')
parser.add_argument('--batch_size', default=1, type=int, help='batch size')
parser.add_argument('--num_workers', default=8, type=int, help='workers numebr for DataLoader')
parser.add_argument('--a_min', default=-175, type=float, help='a_min in ScaleIntensityRanged')
parser.add_argument('--a_max', default=250, type=float, help='a_max in ScaleIntensityRanged')
parser.add_argument('--b_min', default=0.0, type=float, help='b_min in ScaleIntensityRanged')
parser.add_argument('--b_max', default=1.0, type=float, help='b_max in ScaleIntensityRanged')
parser.add_argument('--space_x', default=1.5, type=float, help='spacing in x direction')
parser.add_argument('--space_y', default=1.5, type=float, help='spacing in y direction')
parser.add_argument('--space_z', default=1.5, type=float, help='spacing in z direction')
parser.add_argument('--roi_x', default=96, type=int, help='roi size in x direction')
parser.add_argument('--roi_y', default=96, type=int, help='roi size in y direction')
parser.add_argument('--roi_z', default=96, type=int, help='roi size in z direction')
parser.add_argument('--num_samples', default=1, type=int, help='sample number in each ct')
parser.add_argument('--phase', default='test', help='train or validation or test')
parser.add_argument('--original_label',action="store_true",default=False,help='whether dataset has original label')
parser.add_argument('--cache_dataset', action="store_true", default=False, help='whether use cache dataset')
parser.add_argument('--store_result', action="store_true", default=False, help='whether save prediction result')
parser.add_argument('--store_entropy', action="store_true", default=False, help='whether save entropy map')
parser.add_argument('--store_soft_pred', action="store_true", default=False, help='whether save soft prediction')
parser.add_argument('--cache_rate', default=0.6, type=float, help='The percentage of cached data in total')
parser.add_argument('--cpu',action="store_true", default=False, help='The entire inference process is performed on the GPU ')
parser.add_argument('--threshold_organ', default='Pancreas Tumor')
parser.add_argument('--threshold', default=0.6, type=float)
parser.add_argument('--backbone', default='unet', help='backbone [swinunetr or unet]')
parser.add_argument('--create_dataset',action="store_true", default=False)
args = parser.parse_args()
# prepare the 3D model
model = Universal_model(img_size=(args.roi_x, args.roi_y, args.roi_z),
in_channels=1,
out_channels=NUM_CLASS,
backbone=args.backbone,
encoding='word_embedding'
)
# Load pre-trained weights
store_dict = model.state_dict()
store_dict_keys = [key for key, value in store_dict.items()]
checkpoint = torch.load(args.resume)
load_dict = checkpoint['net']
load_dict_value = [value for key, value in load_dict.items()]
# args.epoch = checkpoint['epoch']
for i in range(len(store_dict)):
store_dict[store_dict_keys[i]] = load_dict_value[i]
model.load_state_dict(store_dict)
print('Use pretrained weights')
model.cuda()
torch.backends.cudnn.benchmark = True
test_loader, val_transforms = get_loader(args)
validation(model, test_loader, val_transforms, args)
if __name__ == "__main__":
main()