-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy path303_save_reload.py
80 lines (62 loc) · 2.51 KB
/
303_save_reload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
tensorflow: 1.1.0
matplotlib
numpy
"""
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
tf.set_random_seed(1)
np.random.seed(1)
# fake data
x = np.linspace(-1, 1, 100)[:, np.newaxis] # shape (100, 1)
noise = np.random.normal(0, 0.1, size=x.shape)
y = np.power(x, 2) + noise # shape (100, 1) + some noise
def save():
print('This is save')
# build neural network
tf_x = tf.placeholder(tf.float32, x.shape) # input x
tf_y = tf.placeholder(tf.float32, y.shape) # input y
l = tf.layers.dense(tf_x, 10, tf.nn.relu) # hidden layer
o = tf.layers.dense(l, 1) # output layer
loss = tf.losses.mean_squared_error(tf_y, o) # compute cost
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer()) # initialize var in graph
saver = tf.train.Saver() # define a saver for saving and restoring
for step in range(100): # train
sess.run(train_op, {tf_x: x, tf_y: y})
saver.save(sess, './params', write_meta_graph=False) # meta_graph is not recommended
# plotting
pred, l = sess.run([o, loss], {tf_x: x, tf_y: y})
plt.figure(1, figsize=(10, 5))
plt.subplot(121)
plt.scatter(x, y)
plt.plot(x, pred, 'r-', lw=5)
plt.text(-1, 1.2, 'Save Loss=%.4f' % l, fontdict={'size': 15, 'color': 'red'})
def reload():
print('This is reload')
# build entire net again and restore
tf_x = tf.placeholder(tf.float32, x.shape) # input x
tf_y = tf.placeholder(tf.float32, y.shape) # input y
l_ = tf.layers.dense(tf_x, 10, tf.nn.relu) # hidden layer
o_ = tf.layers.dense(l_, 1) # output layer
loss_ = tf.losses.mean_squared_error(tf_y, o_) # compute cost
sess = tf.Session()
# don't need to initialize variables, just restoring trained variables
saver = tf.train.Saver() # define a saver for saving and restoring
saver.restore(sess, './params')
# plotting
pred, l = sess.run([o_, loss_], {tf_x: x, tf_y: y})
plt.subplot(122)
plt.scatter(x, y)
plt.plot(x, pred, 'r-', lw=5)
plt.text(-1, 1.2, 'Reload Loss=%.4f' % l, fontdict={'size': 15, 'color': 'red'})
plt.show()
save()
# destroy previous net
tf.reset_default_graph()
reload()