Skip to content

Latest commit

 

History

History
 
 

0072.edit-distance

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

题目

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

动态规划思想:参考源

假设dp[i][j]表示以S[i]结尾的字符串和以T[j]结尾的字符串转换所需的最小操作数,考虑三种操作,然后取三者最小值:

1、替换:

假设S[i-1],T[j-1]已对齐,即dp[i-1][j-1]已知,则当S[i]==T[j]时,dp[i][j]=dp[i-1][j-1],否则,dp[i][j]=dp[i-1][j-1]+1.

2、删除

假设S[i-1],T[j]已对齐,即dp[i-1][j]已知,多出来的S[i]需删除,操作数+1,则dp[i][j]=dp[i-1][j]+1.

3、插入

假设S[i],T[j-1]已对齐,即dp[i][j-1]已知,需在S中插入S[i+1]=T[j]来匹配,操作数+1,则dp[i][j]=dp[i][j-1]+1.

状态转移方程:

dp[i][j]=min(dp[i-1][j-1]+(S[i]==T[j]?0,1),dp[i-1][j]+1,dp[i][j-1]+1)

初始值:

dp[i][0]=i

dp[0][j]=j

复杂度:

时间复杂度:O(m*n)

空间复杂度:O(m*n)

空间优化:

由状态转移方程可知,dp[i][j]与dp[i-1][j-1],dp[i-1][j],dp[i][j-1]有关,可以去掉一维,只留下dp[j]。

等式右边的dp[i-1][j]和dp[i][j-1]都可以直接改成dp[j](旧的值)和dp[j-1](已更新),只有dp[i-1][j-1]没有记录下来,通过某个变量保存起来之后就可以。

因此空间复杂度:O(n)

见程序注释