forked from libtom/libtommath
-
Notifications
You must be signed in to change notification settings - Fork 2
/
bn_mp_exptmod.c
112 lines (99 loc) · 2.77 KB
/
bn_mp_exptmod.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <tommath_private.h>
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, [email protected], http://libtom.org
*/
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
int dr;
/* modulus P must be positive */
if (P->sign == MP_NEG) {
return MP_VAL;
}
/* if exponent X is negative we have to recurse */
if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
mp_int tmpG, tmpX;
int err;
/* first compute 1/G mod P */
if ((err = mp_init(&tmpG)) != MP_OKAY) {
return err;
}
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
/* now get |X| */
if ((err = mp_init(&tmpX)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
#else
/* no invmod */
return MP_VAL;
#endif
}
/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
if (mp_reduce_is_2k_l(P) == MP_YES) {
return s_mp_exptmod(G, X, P, Y, 1);
}
#endif
#ifdef BN_MP_DR_IS_MODULUS_C
/* is it a DR modulus? */
dr = mp_dr_is_modulus(P);
#else
/* default to no */
dr = 0;
#endif
#ifdef BN_MP_REDUCE_IS_2K_C
/* if not, is it a unrestricted DR modulus? */
if (dr == 0) {
dr = mp_reduce_is_2k(P) << 1;
}
#endif
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if ((mp_isodd (P) == MP_YES) || (dr != 0)) {
return mp_exptmod_fast (G, X, P, Y, dr);
} else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod (G, X, P, Y, 0);
#else
/* no exptmod for evens */
return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
}
#endif
}
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */