-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
331 lines (277 loc) · 13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#! -*- coding:utf-8 -*-
import json
import numpy as np
from random import choice
from tqdm import tqdm
import time
import argparse
import torch
import torch.utils.data as Data
torch.backends.cudnn.benchmark = True
import model
from curLine_file import curLine
def parse_arguments(parser):
###Training Hyperparameters
parser.add_argument('--corpus_folder', type=str, default="/home/cloudminds/Mywork/corpus/knowledge",
help="corpus folder path")
parser.add_argument('--output_dir', type=str, default="/home/cloudminds/Mywork/corpus/knowledge/models",
help="save models")
parser.add_argument('--device', type=str, default='cpu', choices=['cpu', 'cuda:0', 'cuda:1', 'cuda:2'],
help="GPU/CPU devices")
parser.add_argument('--seed', type=int, default=42, help="random seed")
parser.add_argument('--digit2zero', action="store_true", default=True,
help="convert the number to 0, make it true is better")
##optimize hyperparameter
# parser.add_argument('--optimizer', type=str, default="adam")
parser.add_argument('--learning_rate', type=float, default=0.005) ##only for adam now
parser.add_argument('--lr_decay', type=float, default=0.98) # TODO change decay method
parser.add_argument('--grad_clip', type=int, default=5.0, help="default grad clip is 5 (works well)")
parser.add_argument('--batch_size', type=int, default=64,
help="default batch size is 10 (works well)")
parser.add_argument('--num_epochs', type=int, default=10, help="Usually we set to 10.")
parser.add_argument('--train_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--dev_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--test_num', type=int, default=-1, help="-1 means all the data")
##model hyperparameter
parser.add_argument('--hidden_dim', type=int, default=64, help="hidden size")
parser.add_argument('--char_dim', type=int, default=128)
parser.add_argument('--subject_ratio', type=float, default=2.5, help="ratio of subject in total loass")
parser.add_argument('--dropout', type=float, default=0.2, help="dropout for embedding")
parser.add_argument('--l2', type=float, default=1e-7)
args = parser.parse_args()
return args
parser = argparse.ArgumentParser(description="information extraction")
args = parse_arguments(parser)
args.device = torch.device(args.device)
print(curLine(), "device:", args.device, "subject_ratio=%f, corpus_folder:%s"
% (args.subject_ratio, args.corpus_folder))
def get_now_time():
a = time.time()
return time.ctime(a)
def seq_padding(X):
L = [len(x) for x in X]
ML = max(L)
return [x + [0] * (ML - len(x)) for x in X]
def seq_padding_vec(X):
L = [len(x) for x in X]
ML = max(L)
return [x + [[1, 0]] * (ML - len(x)) for x in X]
train_data = json.load(open('%s/train_data_me.json' % args.corpus_folder))
dev_data = json.load(open('%s/dev_data_me.json' % args.corpus_folder))
id2predicate, predicate2id = json.load(open('%s/all_schemas_me.json' % args.corpus_folder))
id2predicate = {int(i): j for i, j in id2predicate.items()}
id2char, char2id = json.load(open('%s/all_chars_me.json' % args.corpus_folder))
num_classes = len(id2predicate)
print(curLine(), "num_classes=", num_classes)
class data_generator:
def __init__(self, data, batch_size=64):
self.data = data
self.batch_size = batch_size
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def pro_res(self):
idxs = list(range(len(self.data)))
np.random.shuffle(idxs)
T, S1, S2, K1, K2, O1, O2, = [], [], [], [], [], [], []
# T 对文本的序列化
# S1,S2 所有subject的位置 one_hot编码
# K1,K2 随机某个subject的位置 维度较小
# O1,O2 各object对应的relation
for i in idxs:
d = self.data[i]
text = d['text']
items = {}
for sp in d['spo_list']:
subjectid = text.find(sp[0])
objectid = text.find(sp[2])
if subjectid != -1 and objectid != -1:
key = (subjectid, subjectid + len(sp[0])) # start location and end location
if key not in items:
items[key] = []
items[key].append((objectid, objectid + len(sp[2]), predicate2id[sp[1]])) # object and relation
if items:
T.append([char2id.get(c, 1) for c in text]) # 1是unk,0是padding
# s1, s2 = [[1,0]] * len(text), [[1,0]] * len(text)
s1, s2 = [0] * len(text), [0] * len(text) # subject_location
for subject_location in items:
s1[subject_location[0]] = 1
s2[subject_location[1] - 1] = 1
random_subject = choice(list(items.keys())) # 随机选择一个subject
o1, o2 = [0] * len(text), [0] * len(text) # 0是unk类
for value in items[random_subject]:
o1[value[0]] = value[2]
o2[value[1] - 1] = value[2]
S1.append(s1)
S2.append(s2)
K1.append([random_subject[0]])
K2.append([random_subject[1] - 1])
O1.append(o1)
O2.append(o2)
T = np.array(seq_padding(T))
S1 = np.array(seq_padding(S1))
S2 = np.array(seq_padding(S2))
O1 = np.array(seq_padding(O1))
O2 = np.array(seq_padding(O2))
K1, K2 = np.array(K1), np.array(K2)
return [T, S1, S2, K1, K2, O1, O2]
class myDataset(Data.Dataset):
"""
初始化数据
"""
def __init__(self, _T, _S1, _S2, _K1, _K2, _O1, _O2):
# xy = np.loadtxt('../dataSet/diabetes.csv.gz', delimiter=',', dtype=np.float32) # 使用numpy读取数据
self.x_data = _T
self.y1_data = _S1
self.y2_data = _S2
self.k1_data = _K1
self.k2_data = _K2
self.o1_data = _O1
self.o2_data = _O2
self.len = len(self.x_data)
def __getitem__(self, index):
return self.x_data[index], self.y1_data[index], self.y2_data[index], self.k1_data[index], self.k2_data[index], \
self.o1_data[index], self.o2_data[index]
def __len__(self):
return self.len
def collate_fn(data):
t = np.array([item[0] for item in data], np.int32)
s1 = np.array([item[1] for item in data], np.int32)
s2 = np.array([item[2] for item in data], np.int32)
k1 = np.array([item[3] for item in data], np.int32)
k2 = np.array([item[4] for item in data], np.int32)
o1 = np.array([item[5] for item in data], np.int32)
o2 = np.array([item[6] for item in data], np.int32)
return {
'T': torch.LongTensor(t), # targets_i
'S1': torch.FloatTensor(s1),
'S2': torch.FloatTensor(s2),
'K1': torch.LongTensor(k1),
'K2': torch.LongTensor(k2),
'O1': torch.LongTensor(o1),
'O2': torch.LongTensor(o2),
}
dg = data_generator(train_data)
T, S1, S2, K1, K2, O1, O2 = dg.pro_res()
torch_dataset = myDataset(T, S1, S2, K1, K2, O1, O2)
loader = Data.DataLoader(
dataset=torch_dataset, # torch TensorDataset format
batch_size=args.batch_size, # mini batch size
shuffle=True, # random shuffle for training
num_workers=8,
collate_fn=collate_fn, # subprocesses for loading data
)
s_m = model.s_model(len(char2id) + 2, args.char_dim, args.hidden_dim, args).to(args.device) # .cuda()
po_m = model.po_model(args.char_dim, num_classes=num_classes, args=args).to(args.device) # .cuda()
params = list(s_m.parameters())
params += list(po_m.parameters())
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
loss = torch.nn.CrossEntropyLoss().to(args.device)
b_loss = torch.nn.BCEWithLogitsLoss().to(args.device)
def extract_items(text_in):
# 验证测试时,batch_size=1
R = []
_s = [char2id.get(c, 1) for c in text_in]
_s = np.array([_s])
_k1, _k2, t, h, mask = s_m(torch.LongTensor(_s).to(args.device))
_k1, _k2 = _k1[0, :, 0], _k2[0, :, 0]
# _kk1s = []
for i, _kk1 in enumerate(_k1):
if _kk1 > 0.5:
_subject = ''
for j, _kk2 in enumerate(_k2[i:]):
if _kk2 > 0.5:
_subject = text_in[i: i + j + 1]
break
if _subject:
_k1, _k2 = torch.LongTensor([[i]]).to(args.device), torch.LongTensor([[i + j]]).to(args.device) # np.array([i]), np.array([i+j])
_o1, _o2 = po_m(t, h, _k1, _k2) # 对于某个subject(k1,k2表示), 识别各个可能的关系o(内容表示关系,索引表示object的位置)
_o1, _o2 = _o1.cpu().data.numpy(), _o2.cpu().data.numpy()
_o1, _o2 = np.argmax(_o1[0], 1), np.argmax(_o2[0], 1)
# print(curLine(), "_o1:", _o1, ",_o2:", _o2)
for i, _oo1 in enumerate(_o1):
if _oo1 > 0:
for j, _oo2 in enumerate(_o2[i:]):
if _oo2 == _oo1:
_object = text_in[i: i + j + 1]
_predicate = id2predicate[_oo1]
R.append((_subject, _predicate, _object))
# print(curLine(), _subject, _predicate, _object)
# input(curLine())
break
# _kk1s.append(_kk1.data.cpu().numpy()) # _kk1s: list of float
# _kk1s = np.array(_kk1s)
return list(set(R)) # R:三元组的列表,这一步骤是为了去重
def evaluate():
A, B, C = 1e-10, 1e-10, 1e-10
cnt = 0
for d in tqdm(iter(dev_data)):
R = set(extract_items(d['text']))
T = set([tuple(i) for i in d['spo_list']])
A += len(R & T)
B += len(R)
C += len(T)
# if cnt % 1000 == 0:
# print('iter: %d f1: %.4f, precision: %.4f, recall: %.4f\n' % (cnt, 2 * A / (B + C), A / B, A / C))
cnt += 1
return 2 * A / (B + C), A / B, A / C
def train_step(loader_res):
t_s = loader_res["T"].to(args.device) # cuda()
k1 = loader_res["K1"].to(args.device) # cuda()
k2 = loader_res["K2"].to(args.device) # cuda()
s1 = loader_res["S1"].to(args.device) # cuda()
s2 = loader_res["S2"].to(args.device) # cuda()
o1 = loader_res["O1"].to(args.device) # cuda()
o2 = loader_res["O2"].to(args.device) # cuda()
ps_1, ps_2, t, t_max, mask = s_m(t_s)
po_1, po_2 = po_m(t, t_max, k1, k2)
s1 = torch.unsqueeze(s1, 2)
s2 = torch.unsqueeze(s2, 2)
s1_loss = b_loss(ps_1, s1)
s1_loss = torch.sum(s1_loss.mul(mask)) / torch.sum(mask)
s2_loss = b_loss(ps_2, s2)
s2_loss = torch.sum(s2_loss.mul(mask)) / torch.sum(mask)
po_1 = po_1.permute(0, 2, 1)
po_2 = po_2.permute(0, 2, 1)
o1_loss = loss(po_1, o1)
o1_loss = torch.sum(o1_loss.mul(mask[:, :, 0])) / torch.sum(mask)
o2_loss = loss(po_2, o2)
o2_loss = torch.sum(o2_loss.mul(mask[:, :, 0])) / torch.sum(mask)
loss_sum = args.subject_ratio * (s1_loss + s2_loss) + (o1_loss + o2_loss) # TODO
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()
return loss_sum
def update_lr(optimizer, coefficient):
previous = optimizer.param_groups[0]['lr']
print(curLine(), "learning rate from %f drop to %f" % (previous, previous * coefficient))
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * coefficient
return param_group['lr']
if __name__ == '__main__':
best_f1 = 0
best_epoch = 0
start_time = time.time()
for epoch_id in range(1, args.num_epochs + 1):
for step, loader_res in tqdm(iter(enumerate(loader))):
loss_sum = train_step(loader_res=loader_res)
f1, precision, recall = evaluate()
cost_time = (time.time() - start_time) / 3600.0
learning_rate = update_lr(optimizer=optimizer, coefficient=args.lr_decay)
print("%s epoch:%d/%d, learning_rate=%f, loss=%f, f1=%f."
% (curLine(), epoch_id, args.num_epochs, learning_rate, loss_sum.data.item(), f1))
print(curLine(), 'f1: %.4f, precision: %.4f, recall: %.4f, bestf1: %.4f, bestepoch: %d, cost %fh.' % (
f1, precision, recall, best_f1, best_epoch, cost_time))
if f1 >= best_f1:
best_f1 = f1
best_epoch = epoch_id
s_model_path = "%s/s_epoch%d_f1%f.pkl" % (args.output_dir, epoch_id, f1)
torch.save(s_m, s_model_path)
po_model_path = "%s/po_epoch%d_f1%f.pkl" % (args.output_dir, epoch_id, f1)
torch.save(po_m, po_model_path)
print("%s have saved model to %s at epoch=%d.\n" % (curLine(), args.output_dir, epoch_id))
# print("%s f1=%f, precision=%f, recall=%f\n" % (curLine(), f1, precision, recall))
cost_time = (time.time()-start_time)/3600.0
print(curLine(), "finish train %d epoches, cost %f hours." % (args.num_epochs, cost_time))