-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
executable file
·135 lines (109 loc) · 4.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import pickle
import argparse
import os
from midi_utils import read_midi_files
from model import ModularizedVAE
from loader import MusicDataset, BatchGenerator
from args import get_args
import scheduler
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from progressbar import ProgressBar, ETA, FormatLabel, Bar
class DataPathOrderNotRightError(Exception):
pass
def assert_data_order(data_path):
# Assert
if ("nottingham" not in data_path[0].lower()) or ("jsb" not in data_path[1].lower()) or ("piano" not in data_path[2].lower()):
print("First argument should be nottingham, second should be jsb and third should be piano")
raise DataPathOrderNotRightError("You should place data path in the right order")
if __name__ == '__main__':
args = get_args()
print('Loading data......')
# Assert data path's order
assert_data_order(args.data)
# Load
datass, _, note_sets = read_midi_files(args.data, None)
train_loader = BatchGenerator(datass, batch_size=args.batch_size, shuffle=True)
print('Build model......')
model_args = {
'note_size': (
len(note_sets['timing']),
len(note_sets['duration']),
len(note_sets['pitch'])),
'hidden_size': args.hidden_size,
'encoder_name': args.encoder,
'decoder_name': args.decoder
}
vae = ModularizedVAE(**model_args)
if args.cuda:
vae.cuda()
optimizer = torch.optim.RMSprop(
vae.parameters(),
lr=args.lr,
alpha=args.alpha)
scheduled_sampler = scheduler.LogisticScheduler(0.0, 0.01, 0.9, 10)
log_file = open(os.path.join('logs', args.prefix + '.log'), 'w+')
print('epoch,rec_loss,kld_loss,accuracy,schedule_rate', file=log_file)
log_file.flush()
for epoch in range(1, args.epochs + 1):
print('Epoch:', epoch)
total_loss = []
total_kld = []
total_acc = []
widgets = [FormatLabel(''), ' ',
Bar('=', '[', ']'), ' - ',
ETA()]
pbar = ProgressBar(widgets=widgets, maxval=len(train_loader))
pbar.start()
for batch_i, batch_song in enumerate(train_loader()):
batch_size = batch_song.size(0)
batch_song = batch_song.permute(2, 0, 1)
if args.cuda:
batch_song = batch_song.cuda()
if args.encoder == "AutoEncoder":
reconstruct, song, z = vae(
batch_song,
teacher_forcing=True)
else:
reconstruct, song, (mu, logvar) = vae(
batch_song,
teacher_forcing=True)
rec_loss = vae.reconstruct_loss(reconstruct, batch_song)
if args.encoder == "AutoEncoder":
# autoencoder do not have kld loss
kld_loss = torch.zeros(1).cuda() if args.cuda else torch.zeros(1)
else:
kld_loss = vae.kld_loss(mu, logvar)
loss = rec_loss + \
scheduled_sampler.get_value(epoch) * kld_loss
total_loss.append(loss.item())
total_kld.append(kld_loss.item())
total_acc.append((song == batch_song).float().mean().item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
widgets[0] = FormatLabel('{}/{}'.format(
batch_i * args.batch_size + batch_size, len(train_loader)))
pbar.update(batch_i * args.batch_size + batch_size)
pbar.finish()
print('rec_loss: {:.4f}, kld_loss: {:.4f}, accuracy: {:.4f}, shedule_rate: {:.4f}'.format(
np.mean(total_loss),
np.mean(total_kld),
np.mean(total_acc),
scheduled_sampler.get_value(epoch)))
# Train log
print(epoch, np.mean(total_loss), np.mean(total_kld), np.mean(total_acc),
scheduled_sampler.get_value(epoch), sep=',', file=log_file)
log_file.flush()
#
if epoch % args.save_intervals == 0:
save_model_dir = os.path.join('models', args.prefix)
os.mkdir(save_model_dir) if os.path.isdir(save_model_dir) == False else None
torch.save({
'state_dict': {k: v.cpu() for k, v in vae.state_dict().items()},
'model_args': model_args,
'note_sets': note_sets},
open(os.path.join(save_model_dir,
'%s_e%d.pt' % (args.prefix, epoch)), 'wb+'))