-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhook_HYDiT_main_train_deepspeed.py
595 lines (516 loc) · 25.3 KB
/
hook_HYDiT_main_train_deepspeed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import gc
import json
import os
import random
import sys
import time
from functools import partial
from glob import glob
from pathlib import Path
import numpy as np
import safetensors.torch
import deepspeed
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.distributed.optim import ZeroRedundancyOptimizer
from torchvision.transforms import functional as TF
from diffusers.models import AutoencoderKL
from transformers import BertModel, BertTokenizer, logging as tf_logging
from hydit.config import get_args
from hydit.lr_scheduler import WarmupLR
from hydit.data_loader.arrow_load_stream import TextImageArrowStream
from hydit.diffusion import create_diffusion
from hydit.ds_config import deepspeed_config_from_args
from hydit.modules.ema import EMA
from hydit.modules.fp16_layers import Float16Module
from hydit.modules.models import HUNYUAN_DIT_MODELS
from hydit.modules.posemb_layers import init_image_posemb
from hydit.utils.tools import create_logger, set_seeds, create_exp_folder, get_trainable_params
from IndexKits.index_kits import ResolutionGroup
from IndexKits.index_kits.sampler import DistributedSamplerWithStartIndex, BlockDistributedSampler
from peft import LoraConfig, get_peft_model
def deepspeed_initialize(args, logger, model, opt, deepspeed_config):
logger.info(f"Initialize deepspeed...")
logger.info(f" Using deepspeed optimizer")
def get_learning_rate_scheduler(warmup_min_lr, lr, warmup_num_steps, opt):
return WarmupLR(opt, warmup_min_lr, lr, warmup_num_steps)
logger.info(
f" Building scheduler with warmup_min_lr={args.warmup_min_lr}, warmup_num_steps={args.warmup_num_steps}")
logger.info(
f" deepspeed_config={deepspeed_config}")
model, opt, _, scheduler = deepspeed.initialize(
model=model,
model_parameters=get_trainable_params(model),
config_params=deepspeed_config,
args=args,
lr_scheduler=partial(get_learning_rate_scheduler, args.warmup_min_lr,
args.lr, args.warmup_num_steps) if args.warmup_num_steps > 0 else None,
)
return model, opt, scheduler
def save_checkpoint(args, rank, logger, model, ema, epoch, train_steps, checkpoint_dir):
def save_lora_weight(checkpoint_dir, client_state, tag=f"{train_steps:07d}.pt"):
cur_ckpt_save_dir = f"{checkpoint_dir}/{tag}"
if rank == 0:
if args.use_fp16:
model.module.module.save_pretrained(cur_ckpt_save_dir)
else:
model.module.save_pretrained(cur_ckpt_save_dir)
checkpoint_path = "[Not rank 0. Disabled output.]"
client_state = {
"steps": train_steps,
"epoch": epoch,
"args": args
}
if ema is not None:
client_state['ema'] = ema.state_dict()
dst_paths = []
if train_steps % args.ckpt_every == 0:
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
try:
if args.training_parts == "lora":
save_lora_weight(checkpoint_dir, client_state,
tag=f"{train_steps:07d}.pt")
else:
model.save_checkpoint(
checkpoint_dir, client_state=client_state, tag=f"{train_steps:07d}.pt")
dst_paths.append(checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
except:
logger.error(f"Saved failed to {checkpoint_path}")
if train_steps % args.ckpt_latest_every == 0 or train_steps == args.max_training_steps:
save_name = "latest.pt"
checkpoint_path = f"{checkpoint_dir}/{save_name}"
try:
if args.training_parts == "lora":
save_lora_weight(checkpoint_dir, client_state,
tag=f"{save_name}")
else:
model.save_checkpoint(
checkpoint_dir, client_state=client_state, tag=f"{save_name}")
dst_paths.append(checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
except:
logger.error(f"Saved failed to {checkpoint_path}")
dist.barrier()
if rank == 0 and len(dst_paths) > 0:
# Delete optimizer states to avoid occupying too much disk space.
for dst_path in dst_paths:
for opt_state_path in glob(f"{dst_path}/zero_dp_rank_*_tp_rank_00_pp_rank_00_optim_states.pt"):
os.remove(opt_state_path)
return checkpoint_path
@torch.no_grad()
def prepare_model_inputs(args, batch, device, vae, text_encoder, text_encoder_t5, freqs_cis_img):
try:
from .hook_HYDiT_utils import VAE_EMA_PATH, TEXT_ENCODER, TOKENIZER, T5_ENCODER, easy_sample_images, model_resume, PBar
except:
from hook_HYDiT_utils import VAE_EMA_PATH, TEXT_ENCODER, TOKENIZER, T5_ENCODER, easy_sample_images, model_resume, PBar
image, text_embedding, text_embedding_mask, text_embedding_t5, text_embedding_mask_t5, kwargs = batch
# clip & mT5 text embedding
text_embedding = text_embedding.to(device)
text_embedding_mask = text_embedding_mask.to(device)
encoder_hidden_states = text_encoder(
text_embedding.to(device),
attention_mask=text_embedding_mask.to(device),
)[0]
text_embedding_t5 = text_embedding_t5.to(device).squeeze(1)
text_embedding_mask_t5 = text_embedding_mask_t5.to(device).squeeze(1)
with torch.no_grad():
output_t5 = text_encoder_t5(
input_ids=text_embedding_t5,
attention_mask=text_embedding_mask_t5 if T5_ENCODER['attention_mask'] else None,
output_hidden_states=True
)
encoder_hidden_states_t5 = output_t5['hidden_states'][T5_ENCODER['layer_index']].detach(
)
# additional condition
image_meta_size = kwargs['image_meta_size'].to(device)
style = kwargs['style'].to(device)
if args.extra_fp16:
image = image.half()
image_meta_size = image_meta_size.half() if image_meta_size is not None else None
# Map input images to latent space + normalize latents:
image = image.to(device)
vae_scaling_factor = vae.config.scaling_factor
latents = vae.encode(image).latent_dist.sample().mul_(vae_scaling_factor)
# positional embedding
_, _, height, width = image.shape
reso = f"{height}x{width}"
cos_cis_img, sin_cis_img = freqs_cis_img[reso]
# Model conditions
model_kwargs = dict(
encoder_hidden_states=encoder_hidden_states,
text_embedding_mask=text_embedding_mask,
encoder_hidden_states_t5=encoder_hidden_states_t5,
text_embedding_mask_t5=text_embedding_mask_t5,
image_meta_size=image_meta_size,
style=style,
cos_cis_img=cos_cis_img,
sin_cis_img=sin_cis_img,
)
return latents, model_kwargs
def Core(args):
if args.training_parts == "lora":
args.use_ema = False
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
dist.init_process_group("nccl")
world_size = dist.get_world_size()
batch_size = args.batch_size
grad_accu_steps = args.grad_accu_steps
global_batch_size = world_size * batch_size * grad_accu_steps
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * world_size + rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={world_size}.")
deepspeed_config = deepspeed_config_from_args(args, global_batch_size)
# Setup an experiment folder
experiment_dir, checkpoint_dir, logger = create_exp_folder(args, rank)
# Log all the arguments
logger.info(sys.argv)
logger.info(str(args))
# Save to a json file
args_dict = vars(args)
args_dict['world_size'] = world_size
with open(f"{experiment_dir}/args.json", 'w') as f:
json.dump(args_dict, f, indent=4)
# Disable the message "Some weights of the model checkpoint at ... were not used when initializing BertModel."
# If needed, just comment the following line.
tf_logging.set_verbosity_error()
# ===========================================================================
# Building HYDIT
# ===========================================================================
logger.info("Building HYDIT Model.")
# ---------------------------------------------------------------------------
# Training sample base size, such as 256/512/1024. Notice that this size is
# just a base size, not necessary the actual size of training samples. Actual
# size of the training samples are correlated with `resolutions` when enabling
# multi-resolution training.
# ---------------------------------------------------------------------------
image_size = args.image_size
if len(image_size) == 1:
image_size = [image_size[0], image_size[0]]
if len(image_size) != 2:
raise ValueError(f"Invalid image size: {args.image_size}")
assert image_size[0] % 8 == 0 and image_size[1] % 8 == 0, "Image size must be divisible by 8 (for the VAE encoder). " \
f"got {image_size}"
latent_size = [image_size[0] // 8, image_size[1] // 8]
# initialize model by deepspeed
assert args.deepspeed, f"Must enable deepspeed in this script: train_deepspeed.py"
with deepspeed.zero.Init(data_parallel_group=torch.distributed.group.WORLD,
remote_device=None if args.remote_device == 'none' else args.remote_device,
config_dict_or_path=deepspeed_config,
mpu=None,
enabled=args.zero_stage == 3):
model = HUNYUAN_DIT_MODELS[args.model](args,
input_size=latent_size,
log_fn=logger.info,
)
# Multi-resolution / Single-resolution training.
if args.multireso:
resolutions = ResolutionGroup(image_size[0],
align=16,
step=args.reso_step,
target_ratios=args.target_ratios).data
else:
resolutions = ResolutionGroup(image_size[0],
align=16,
target_ratios=['1:1']).data
freqs_cis_img = init_image_posemb(args.rope_img,
resolutions=resolutions,
patch_size=model.patch_size,
hidden_size=model.hidden_size,
num_heads=model.num_heads,
log_fn=logger.info,
rope_real=args.rope_real,
)
# Create EMA model and convert to fp16 if needed.
ema = None
if args.use_ema:
ema = EMA(args, model, device, logger)
# Setup FP16 main model:
if args.use_fp16:
model = Float16Module(model, args)
logger.info(
f" Using main model with data type {'fp16' if args.use_fp16 else 'fp32'}")
diffusion = create_diffusion(
noise_schedule=args.noise_schedule,
predict_type=args.predict_type,
learn_sigma=args.learn_sigma,
mse_loss_weight_type=args.mse_loss_weight_type,
beta_start=args.beta_start,
beta_end=args.beta_end,
noise_offset=args.noise_offset,
)
try:
from .hook_HYDiT_utils import VAE_EMA_PATH, TEXT_ENCODER, TOKENIZER, T5_ENCODER, easy_sample_images, model_resume, PBar, CustomizeEmbeds
except:
from hook_HYDiT_utils import VAE_EMA_PATH, TEXT_ENCODER, TOKENIZER, T5_ENCODER, easy_sample_images, model_resume, PBar, CustomizeEmbeds
# Setup VAE
logger.info(f" Loading vae from {VAE_EMA_PATH}")
vae = AutoencoderKL.from_pretrained(VAE_EMA_PATH)
# Setup BERT text encoder
logger.info(f" Loading Bert text encoder from {TEXT_ENCODER}")
text_encoder = BertModel.from_pretrained(
TEXT_ENCODER, False, revision=None)
# Setup BERT tokenizer:
logger.info(f" Loading Bert tokenizer from {TOKENIZER}")
tokenizer = BertTokenizer.from_pretrained(TOKENIZER)
# Setup T5 text encoder
from hydit.modules.text_encoder import MT5Embedder
mt5_path = T5_ENCODER['MT5']
if mt5_path is None:
embedder_t5 = CustomizeEmbeds()
else:
embedder_t5 = MT5Embedder(
mt5_path, torch_dtype=T5_ENCODER['torch_dtype'], max_length=args.text_len_t5)
tokenizer_t5 = embedder_t5.tokenizer
text_encoder_t5 = embedder_t5.model
if args.extra_fp16:
logger.info(f" Using fp16 for extra modules: vae, text_encoder")
vae = vae.half().to(device)
text_encoder = text_encoder.half().to(device)
text_encoder_t5 = text_encoder_t5.half().to(device)
else:
vae = vae.to(device)
text_encoder = text_encoder.to(device)
text_encoder_t5 = text_encoder_t5.to(device)
logger.info(
f" Optimizer parameters: lr={args.lr}, weight_decay={args.weight_decay}")
logger.info(" Using deepspeed optimizer")
opt = None
# ===========================================================================
# Building Dataset
# ===========================================================================
logger.info(f"Building Streaming Dataset.")
logger.info(f" Loading index file {args.index_file} (v2)")
dataset = TextImageArrowStream(args=args,
resolution=image_size[0],
random_flip=args.random_flip,
log_fn=logger.info,
index_file=args.index_file,
multireso=args.multireso,
batch_size=batch_size,
world_size=world_size,
random_shrink_size_cond=args.random_shrink_size_cond,
merge_src_cond=args.merge_src_cond,
uncond_p=args.uncond_p,
text_ctx_len=args.text_len,
tokenizer=tokenizer,
uncond_p_t5=args.uncond_p_t5,
text_ctx_len_t5=args.text_len_t5,
tokenizer_t5=tokenizer_t5,
)
if args.multireso:
sampler = BlockDistributedSampler(dataset, num_replicas=world_size, rank=rank, seed=args.global_seed,
shuffle=False, drop_last=True, batch_size=batch_size)
else:
sampler = DistributedSamplerWithStartIndex(dataset, num_replicas=world_size, rank=rank, seed=args.global_seed,
shuffle=False, drop_last=True)
loader = DataLoader(dataset, batch_size=batch_size, shuffle=False, sampler=sampler,
num_workers=args.num_workers, pin_memory=True, drop_last=True)
logger.info(f" Dataset contains {len(dataset):,} images.")
logger.info(f" Index file: {args.index_file}.")
if args.multireso:
logger.info(f' Using MultiResolutionBucketIndexV2 with step {dataset.index_manager.step} '
f'and base size {dataset.index_manager.base_size}')
logger.info(f'\n {dataset.index_manager.resolutions}')
# ===========================================================================
# Loading parameter
# ===========================================================================
logger.info(f"Loading parameter")
start_epoch = 0
start_epoch_step = 0
train_steps = 0
# Resume checkpoint if needed
# if args.resume is not None or len(args.resume) > 0:
if True:
model, ema, start_epoch, start_epoch_step, train_steps = model_resume(
args, model, ema, logger)
if args.training_parts == "lora":
lora_ckpt = args.lora_ckpt
if lora_ckpt is not None:
lastest_checkpoint = lora_ckpt
from peft.peft_model import PeftModel
print(f"Loading lora model from {lastest_checkpoint}")
if args.use_fp16:
model.module = PeftModel.from_pretrained(
model.module, lastest_checkpoint, is_trainable=True)
else:
model = PeftModel.from_pretrained(
model, lastest_checkpoint, is_trainable=True)
else:
loraconfig = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
target_modules=args.target_modules
)
if args.use_fp16:
model.module = get_peft_model(model.module, loraconfig)
else:
model = get_peft_model(model, loraconfig)
logger.info(f" Training parts: {args.training_parts}")
model, opt, scheduler = deepspeed_initialize(
args, logger, model, opt, deepspeed_config)
# ===========================================================================
# Training
# ===========================================================================
# print model structure
# for name, param in model.named_parameters():
# print(name, param.size())
# raise Exception("stop")
model.train()
if args.use_ema:
ema.eval()
print(f" Worker {rank} ready.")
dist.barrier()
iters_per_epoch = len(loader)
logger.info(
" ****************************** Running training ******************************")
logger.info(f" Number GPUs: {world_size}")
logger.info(f" Number training samples: {len(dataset):,}")
logger.info(
f" Number parameters: {sum(p.numel() for p in model.parameters()):,}")
logger.info(
f" Number trainable params: {sum(p.numel() for p in get_trainable_params(model)):,}")
logger.info(
" ------------------------------------------------------------------------------")
logger.info(f" Iters per epoch: {iters_per_epoch:,}")
logger.info(f" Batch size per device: {batch_size}")
logger.info(
f" Batch size all device: {batch_size * world_size * grad_accu_steps:,} (world_size * batch_size * grad_accu_steps)")
logger.info(f" Gradient Accu steps: {args.grad_accu_steps}")
logger.info(
f" Total optimization steps: {args.epochs * iters_per_epoch // grad_accu_steps:,}")
logger.info(
f" Training epochs: {start_epoch}/{args.epochs}")
logger.info(
f" Training epoch steps: {start_epoch_step:,}/{iters_per_epoch:,}")
logger.info(
f" Training total steps: {train_steps:,}/{min(args.max_training_steps, args.epochs * iters_per_epoch):,}")
logger.info(
" ------------------------------------------------------------------------------")
logger.info(f" Noise schedule: {args.noise_schedule}")
logger.info(
f" Beta limits: ({args.beta_start}, {args.beta_end})")
logger.info(f" Learn sigma: {args.learn_sigma}")
logger.info(f" Prediction type: {args.predict_type}")
logger.info(f" Noise offset: {args.noise_offset}")
logger.info(
" ------------------------------------------------------------------------------")
logger.info(
f" Using EMA model: {args.use_ema} ({args.ema_dtype})")
if args.use_ema:
logger.info(
f" Using EMA decay: {ema.max_value if args.use_ema else None}")
logger.info(
f" Using EMA warmup power: {ema.power if args.use_ema else None}")
logger.info(f" Using main model fp16: {args.use_fp16}")
logger.info(f" Using extra modules fp16: {args.extra_fp16}")
logger.info(
" ------------------------------------------------------------------------------")
logger.info(f" Experiment directory: {experiment_dir}")
logger.info(
" *******************************************************************************")
if args.gc_interval > 0:
gc.disable()
gc.collect()
# Variables for monitoring/logging purposes:
log_steps = 0
running_loss = 0
start_time = time.time()
if args.async_ema:
ema_stream = torch.cuda.Stream()
easy_sample_images(args, vae, text_encoder, tokenizer, model, embedder_t5,
target_height=768, target_width=1280, train_steps=0)
pbar = PBar(args.epochs * len(loader))
# Training loop
for epoch in range(start_epoch, args.epochs):
logger.info(f" Start random shuffle with seed={seed}")
# Makesure all processors use the same seed to shuffle dataset.
dataset.shuffle(seed=args.global_seed + epoch, fast=True)
logger.info(f" End of random shuffle")
# Move sampler to start_index
if not args.multireso:
start_index = start_epoch_step * world_size * batch_size
if start_index != sampler.start_index:
sampler.start_index = start_index
# Reset start_epoch_step to zero, to ensure next epoch will start from the beginning.
start_epoch_step = 0
logger.info(f" Iters left this epoch: {len(loader):,}")
logger.info(f" Beginning epoch {epoch}...")
step = 0
for batch in loader:
step += 1
latents, model_kwargs = prepare_model_inputs(
args, batch, device, vae, text_encoder, text_encoder_t5, freqs_cis_img)
# training model by deepspeed while use fp16
if args.use_fp16:
if args.use_ema and args.async_ema:
with torch.cuda.stream(ema_stream):
ema.update(model.module.module, step=step)
torch.cuda.current_stream().wait_stream(ema_stream)
loss_dict = diffusion.training_losses(
model=model, x_start=latents, model_kwargs=model_kwargs)
loss = loss_dict["loss"].mean()
model.backward(loss)
last_batch_iteration = (
train_steps + 1) // (global_batch_size // (batch_size * world_size))
model.step(
lr_kwargs={'last_batch_iteration': last_batch_iteration})
if args.use_ema and not args.async_ema or (args.async_ema and step == len(loader) - 1):
if args.use_fp16:
ema.update(model.module.module, step=step)
else:
ema.update(model.module, step=step)
# ===========================================================================
# Log loss values:
# ===========================================================================
running_loss += loss.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time.time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(
running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / world_size
# get lr from deepspeed fused optimizer
logger.info(f"(step={train_steps:07d}) " +
(f"(update_step={train_steps // args.grad_accu_steps:07d}) " if args.grad_accu_steps > 1 else "") +
f"Train Loss: {avg_loss:.4f}, "
f"Lr: {opt.param_groups[0]['lr']:.6g}, "
f"Steps/Sec: {steps_per_sec:.2f}, "
f"Samples/Sec: {int(steps_per_sec * batch_size * world_size):d}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time.time()
# collect gc:
if args.gc_interval > 0 and (step % args.gc_interval == 0):
gc.collect()
pbar.step(
f"Epoch {epoch}, step {step}, loss {loss.item():.4f}", args.epochs * len(loader), train_steps)
if (train_steps % args.ckpt_every == 0 or train_steps % args.ckpt_latest_every == 0 # or train_steps == args.max_training_steps
) and train_steps > 0:
easy_sample_images(args, vae, text_encoder, tokenizer, model, embedder_t5,
target_height=768, target_width=1280, train_steps=train_steps)
save_checkpoint(args, rank, logger, model, ema,
epoch, train_steps, checkpoint_dir)
if train_steps >= args.max_training_steps:
logger.info(f"Breaking step loop at {train_steps}.")
break
if train_steps >= args.max_training_steps:
logger.info(f"Breaking epoch loop at {epoch}.")
break
dist.destroy_process_group()