forked from HelloVision/ComfyUI_HelloMeme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeme.py
511 lines (425 loc) · 19 KB
/
meme.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import os.path as osp
import random
import numpy as np
import cv2
import sys
from PIL import Image
import subprocess
import torch
from einops import rearrange
import importlib.metadata
import folder_paths
cur_dir = osp.dirname(osp.abspath(__file__))
installed_packages = [package.name for package in importlib.metadata.distributions()]
REQUIRED = {
'diffusers', 'transformers', 'einops', 'opencv-python', 'tqdm', 'pillow', 'onnxruntime-gpu', 'onnx', 'safetensors', 'accelerate', 'peft'
}
missing = [name for name in REQUIRED if name not in installed_packages]
print("missing pkgs", missing)
if missing:
python = sys.executable
subprocess.check_call([python, '-m', 'pip', 'install', *missing], stdout=subprocess.DEVNULL)
from .hellomeme.utils import (get_drive_expression,
get_drive_expression_pd_fgc,
gen_control_heatmaps,
get_drive_pose,
crop_and_resize,
det_landmarks,
get_torch_device,
append_pipline_weights,
load_face_toolkits
)
from .hellomeme import HMImagePipeline, HMVideoPipeline
DEFAULT_PROMPT = '(best quality), highly detailed, ultra-detailed, headshot, person, well-placed five sense organs, looking at the viewer, centered composition, sharp focus, realistic skin texture'
def get_models_files():
checkpoint_files = folder_paths.get_filename_list("checkpoints")
vae_files = folder_paths.get_filename_list("vae")
vae_files = ["[vae] " + x for x in vae_files] + \
["[checkpoint] " + x for x in checkpoint_files]
lora_files = folder_paths.get_filename_list("loras")
return ['SD1.5'] + checkpoint_files, ['same as checkpoint', 'SD1.5 default vae'] + vae_files, ['None'] + lora_files
class HMImagePipelineLoader:
@classmethod
def INPUT_TYPES(s):
checkpoint_files, vae_files, lora_files = get_models_files()
return {
"optional": {
"checkpoint": (checkpoint_files, ),
"lora": (lora_files, ),
"vae": (vae_files, ),
"version": (['v1', 'v2'], ),
"stylize": (['x1', 'x2'], ),
}
}
RETURN_TYPES = ("HMIMAGEPIPELINE", )
RETURN_NAMES = ("hm_image_pipeline", )
FUNCTION = "load_pipeline"
CATEGORY = "hellomeme"
def load_pipeline(self, checkpoint=None, lora=None, vae=None, version='v2', stylize='x1'):
dtype = torch.float16
pipeline = HMImagePipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipeline.to(dtype=dtype)
pipeline.caryomitosis(version=version)
if checkpoint and not checkpoint.startswith('SD1.5'):
checkpoint_path = folder_paths.get_full_path_or_raise("checkpoints", checkpoint)
else:
checkpoint_path = checkpoint
if vae and vae.startswith("[checkpoint] "):
vae_path = folder_paths.get_full_path_or_raise("checkpoints", vae.replace("[checkpoint] ", ""))
elif vae and vae.startswith("[vae] "):
vae_path = folder_paths.get_full_path_or_raise("vae", vae.replace("[vae] ", ""))
else:
vae_path = vae
if lora and not lora.startswith('None'):
lora_path = folder_paths.get_full_path_or_raise("loras", lora)
else:
lora_path = lora
append_pipline_weights(pipeline, checkpoint_path=checkpoint_path, lora_path=lora_path, vae_path=vae_path,
stylize=stylize)
pipeline.insert_hm_modules(version=version, dtype=dtype)
return (pipeline, )
class HMVideoPipelineLoader:
@classmethod
def INPUT_TYPES(s):
checkpoint_files, vae_files, lora_files = get_models_files()
return {
"optional": {
"checkpoint": (checkpoint_files, ),
"lora": (lora_files, ),
"vae": (vae_files, ),
"version": (['v1', 'v2'], ),
"stylize": (['x1', 'x2'], ),
}
}
RETURN_TYPES = ("HMVIDEOPIPELINE",)
RETURN_NAMES = ("hm_video_pipeline",)
FUNCTION = "load_pipeline"
CATEGORY = "hellomeme"
def load_pipeline(self, checkpoint=None, lora=None, vae=None, version='v2', stylize='x1'):
dtype = torch.float16
pipeline = HMVideoPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipeline.to(dtype=dtype)
pipeline.caryomitosis(version=version)
if checkpoint and not checkpoint.startswith('SD1.5'):
checkpoint_path = folder_paths.get_full_path_or_raise("checkpoints", checkpoint)
else:
checkpoint_path = checkpoint
if vae and vae.startswith("[checkpoint] "):
vae_path = folder_paths.get_full_path_or_raise("checkpoints", vae.replace("[checkpoint] ", ""))
elif vae and vae.startswith("[vae] "):
vae_path = folder_paths.get_full_path_or_raise("vae", vae.replace("[vae] ", ""))
else:
vae_path = vae
if lora and not lora.startswith('None'):
lora_path = folder_paths.get_full_path_or_raise("loras", lora)
else:
lora_path = lora
append_pipline_weights(pipeline, checkpoint_path=checkpoint_path, lora_path=lora_path, vae_path=vae_path, stylize=stylize)
pipeline.insert_hm_modules(version=version, dtype=dtype)
return (pipeline,)
class HMFaceToolkitsLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"gpu_id": ("INT", {"default": 0, "min": -1, "max": 16}, ),
}
}
RETURN_TYPES = ("FACE_TOOLKITS",)
RETURN_NAMES = ("face_toolkits",)
FUNCTION = "load_face_toolkits"
CATEGORY = "hellomeme"
def load_face_toolkits(self, gpu_id):
dtype = torch.float16
face_toolkits = load_face_toolkits(dtype=dtype, gpu_id=gpu_id)
return (face_toolkits, )
class CropPortrait:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"face_toolkits": ("FACE_TOOLKITS",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop_portrait"
CATEGORY = "hellomeme"
def crop_portrait(self, image, face_toolkits):
image_np = cv2.cvtColor((image[0] * 255).cpu().numpy().astype(np.uint8), cv2.COLOR_BGR2RGB)
if min(image_np.shape[:2]) < 512:
raise Exception(f'Image size is too small -> min{image_np.shape[:2]} < 512')
face_toolkits['face_aligner'].reset_track()
faces = face_toolkits['face_aligner'].forward(image_np)
if len(faces) > 0:
face = sorted(faces, key=lambda x: (x['face_rect'][2] - x['face_rect'][0]) * (
x['face_rect'][3] - x['face_rect'][1]))[-1]
ref_landmark = face['pre_kpt_222']
new_image, new_landmark = crop_and_resize(image_np[np.newaxis, :,:,:], ref_landmark[np.newaxis, :,:], 512, crop=True)
# for x, y in new_landmark[0]:
# cv2.circle(new_image[0], (int(x), int(y)), 2, (0, 255, 0), -1)
else:
raise Exception('No face detected')
new_image = cv2.cvtColor(new_image[0], cv2.COLOR_RGB2BGR)
return (torch.from_numpy(new_image[np.newaxis, :,:,:]).float() / 255., )
class GetFaceLandmarks:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_toolkits": ("FACE_TOOLKITS",),
"images": ("IMAGE",),
}
}
RETURN_TYPES = ("FACELANDMARKS222",)
RETURN_NAMES = ("landmarks",)
FUNCTION = "get_face_landmarks"
CATEGORY = "hellomeme"
def get_face_landmarks(self, face_toolkits, images):
frame_list = [cv2.cvtColor((frame * 255).cpu().numpy().astype(np.uint8), cv2.COLOR_BGR2RGB) for frame in images]
frame_num = len(frame_list)
if frame_num == 0:
raise Exception('No image detected')
_, landmark_list = det_landmarks(face_toolkits['face_aligner'], frame_list)
if len(frame_list) != frame_num:
raise Exception('Not all images have face detected!')
return (torch.from_numpy(landmark_list).float(), )
class GetDrivePose:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_toolkits": ("FACE_TOOLKITS",),
"images": ("IMAGE",),
"landmarks": ("FACELANDMARKS222",),
}
}
RETURN_TYPES = ("DRIVE_POSE",)
RETURN_NAMES = ("drive_pose",)
FUNCTION = "get_drive_pose"
CATEGORY = "hellomeme"
def get_drive_pose(self, face_toolkits, images, landmarks):
frame_list = [cv2.cvtColor((frame * 255).cpu().numpy().astype(np.uint8), cv2.COLOR_BGR2RGB) for frame in images]
landmarks = landmarks.cpu().numpy()
rot_list, trans_list = get_drive_pose(face_toolkits, frame_list, landmarks, save_size=512)
return (dict(rot=np.stack(rot_list), trans=np.stack(trans_list)), )
class GetDriveExpression:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_toolkits": ("FACE_TOOLKITS",),
"images": ("IMAGE",),
"landmarks": ("FACELANDMARKS222",),
}
}
RETURN_TYPES = ("DRIVE_EXPRESSION",)
RETURN_NAMES = ("drive_exp",)
FUNCTION = "get_drive_expression"
CATEGORY = "hellomeme"
def get_drive_expression(self, face_toolkits, images, landmarks):
frame_list = [cv2.cvtColor((frame * 255).cpu().numpy().astype(np.uint8), cv2.COLOR_BGR2RGB) for frame in images]
landmarks = landmarks.cpu().numpy()
exp_dict = get_drive_expression(face_toolkits, frame_list, landmarks)
return (exp_dict, )
class GetDriveExpression2:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_toolkits": ("FACE_TOOLKITS",),
"images": ("IMAGE",),
"landmarks": ("FACELANDMARKS222",),
}
}
RETURN_TYPES = ("DRIVE_EXPRESSION2",)
RETURN_NAMES = ("drive_exp2",)
FUNCTION = "get_drive_expression"
CATEGORY = "hellomeme"
def get_drive_expression(self, face_toolkits, images, landmarks):
frame_list = [cv2.cvtColor((frame * 255).cpu().numpy().astype(np.uint8), cv2.COLOR_BGR2RGB) for frame in images]
landmarks = landmarks.cpu().numpy()
exp_dict = get_drive_expression_pd_fgc(face_toolkits, frame_list, landmarks)
return (exp_dict, )
class HMPipelineImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"hm_image_pipeline": ("HMIMAGEPIPELINE",),
"face_toolkits": ("FACE_TOOLKITS",),
"ref_image": ("IMAGE",),
"drive_pose": ("DRIVE_POSE",),
"trans_ratio": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"prompt": ("STRING", {"default": DEFAULT_PROMPT}),
"negative_prompt": ("STRING", {"default": ''}),
"steps": ("INT", {"default": 25, "min": 1, "max": 10000,
"tooltip": "The number of steps used in the denoising process."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff,
"tooltip": "The random seed used for creating the noise."}),
"guidance_scale": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.01}),
"gpu_id": ("INT", {"default": 0, "min": -1, "max": 16}, ),
},
"optional": {
"drive_exp": ("DRIVE_EXPRESSION", {"default": None},),
"drive_exp2": ("DRIVE_EXPRESSION2", {"default": None},),
}
}
RETURN_TYPES = ("IMAGE", "LATENT", )
FUNCTION = "sample"
CATEGORY = "hellomeme"
def sample(self,
hm_image_pipeline,
face_toolkits,
ref_image,
drive_pose,
drive_exp=None,
drive_exp2=None,
trans_ratio='0.0',
prompt=DEFAULT_PROMPT,
negative_prompt='',
steps=25,
seed=0,
guidance_scale=2.0,
gpu_id=0
):
device = get_torch_device(gpu_id)
image_np = (ref_image[0] * 255).cpu().numpy().astype(np.uint8)
if min(image_np.shape[:2]) < 512:
raise Exception(f'Reference image size is too small -> min{image_np.shape[:2]} < 512')
image_np = cv2.resize(image_np, (512, 512))
image_pil = Image.fromarray(image_np)
face_toolkits['face_aligner'].reset_track()
faces = face_toolkits['face_aligner'].forward(image_np)
if len(faces) == 0: raise Exception('No face detected')
face = sorted(faces, key=lambda x: (x['face_rect'][2] - x['face_rect'][0]) * (
x['face_rect'][3] - x['face_rect'][1]))[-1]
ref_landmark = face['pre_kpt_222']
_, ref_trans = face_toolkits['h3dmm'].forward_params(image_np, ref_landmark)
drive_rot, drive_trans = drive_pose['rot'], drive_pose['trans']
condition = gen_control_heatmaps(drive_rot, drive_trans, ref_trans, 512, trans_ratio)
drive_params = dict(condition=condition.unsqueeze(0).to(dtype=torch.float16, device='cpu'))
if isinstance(drive_exp, dict):
drive_params.update(drive_exp)
if isinstance(drive_exp2, dict):
drive_params.update(drive_exp2)
generator = torch.Generator().manual_seed(seed)
result_img, latents = hm_image_pipeline(
prompt=[prompt],
strength=1.0,
image=image_pil,
drive_params=drive_params,
num_inference_steps=steps,
negative_prompt=[negative_prompt],
guidance_scale=guidance_scale,
generator=generator,
device=device,
output_type='np'
)
return (torch.from_numpy(np.clip(result_img[0], 0, 1)), dict(samples=latents), )
class HMPipelineVideo:
@classmethod
def INPUT_TYPES(s):
return {
"required":{
"hm_video_pipeline": ("HMVIDEOPIPELINE",),
"face_toolkits": ("FACE_TOOLKITS",),
"ref_image": ("IMAGE",),
"drive_pose": ("DRIVE_POSE",),
"trans_ratio": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"patch_overlap": ("INT", {"default": 4, "min": 0, "max": 5}),
"prompt": ("STRING", {"default": DEFAULT_PROMPT}),
"negative_prompt": ("STRING", {"default": ''}),
"steps": ("INT", {"default": 25, "min": 1, "max": 10000,
"tooltip": "The number of steps used in the denoising process."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff,
"tooltip": "The random seed used for creating the noise."}),
"guidance_scale": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.01}),
"gpu_id": ("INT", {"default": 0, "min": -1, "max": 16}, ),
},
"optional": {
"drive_exp": ("DRIVE_EXPRESSION", {"default": None},),
"drive_exp2": ("DRIVE_EXPRESSION2", {"default": None},),
}
}
RETURN_TYPES = ("IMAGE", "LATENT", )
FUNCTION = "sample"
CATEGORY = "hellomeme"
def sample(self,
hm_video_pipeline,
face_toolkits,
ref_image,
drive_pose,
drive_exp=None,
drive_exp2=None,
trans_ratio=0.0,
patch_overlap=4,
prompt=DEFAULT_PROMPT,
negative_prompt="",
steps=25,
seed=0,
guidance_scale=2.0,
gpu_id=0
):
device = get_torch_device(gpu_id)
image_np = (ref_image[0] * 255).cpu().numpy().astype(np.uint8)
if min(image_np.shape[:2]) < 512:
raise Exception(f'Reference image size is too small -> min{image_np.shape[:2]} < 512')
image_np = cv2.resize(image_np, (512, 512))
image_pil = Image.fromarray(image_np)
face_toolkits['face_aligner'].reset_track()
faces = face_toolkits['face_aligner'].forward(image_np)
face_toolkits['face_aligner'].reset_track()
if len(faces) == 0: raise Exception('No face detected')
face = sorted(faces, key=lambda x: (x['face_rect'][2] - x['face_rect'][0]) * (
x['face_rect'][3] - x['face_rect'][1]))[-1]
ref_landmark = face['pre_kpt_222']
_, ref_trans = face_toolkits['h3dmm'].forward_params(image_np, ref_landmark)
generator = torch.Generator().manual_seed(seed)
drive_rot, drive_trans = drive_pose['rot'], drive_pose['trans']
condition = gen_control_heatmaps(drive_rot, drive_trans, ref_trans, 512, trans_ratio)
drive_params = dict(condition=condition.unsqueeze(0).to(dtype=torch.float16, device='cpu'))
if isinstance(drive_exp, dict):
drive_params.update(drive_exp)
if isinstance(drive_exp2, dict):
drive_params.update(drive_exp2)
res_frames, latents = hm_video_pipeline(
prompt=[prompt],
strength=1.0,
image=image_pil,
chunk_overlap=patch_overlap,
drive_params=drive_params,
num_inference_steps=steps,
negative_prompt=[negative_prompt],
guidance_scale=guidance_scale,
generator=generator,
device=device,
output_type='np'
)
res_frames = [np.clip(x[0], 0, 1) for x in res_frames]
latents = rearrange(latents[0], 'c f h w -> f c h w')
return (torch.from_numpy(np.array(res_frames)), dict(samples=latents), )
NODE_CLASS_MAPPINGS = {
"HMImagePipelineLoader": HMImagePipelineLoader,
"HMVideoPipelineLoader": HMVideoPipelineLoader,
"HMFaceToolkitsLoader": HMFaceToolkitsLoader,
"HMPipelineImage": HMPipelineImage,
"HMPipelineVideo": HMPipelineVideo,
"CropPortrait": CropPortrait,
"GetFaceLandmarks": GetFaceLandmarks,
"GetDrivePose": GetDrivePose,
"GetDriveExpression": GetDriveExpression,
"GetDriveExpression2": GetDriveExpression2,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"HMImagePipelineLoader": "Load HelloMemeImage Pipeline",
"HMVideoPipelineLoader": "Load HelloMemeVideo Pipeline",
"HMFaceToolkitsLoader": "Load Face Toolkits",
"HMPipelineImage": "HelloMeme Image Pipeline",
"HMPipelineVideo": "HelloMeme Video Pipeline",
"CropPortrait": "Crop Portrait",
"GetFaceLandmarks": "Get Face Landmarks",
"GetDrivePose": "Get Drive Pose",
"GetDriveExpression": "Get Drive Expression",
"GetDriveExpression2": "Get Drive Expression V2",
}