forked from huawei-noah/AdderNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadder.py
72 lines (57 loc) · 2.75 KB
/
adder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
'''
Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of BSD 3-Clause License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
BSD 3-Clause License for more details.
'''
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Function
import math
def adder2d_function(X, W, stride=1, padding=0):
n_filters, d_filter, h_filter, w_filter = W.size()
n_x, d_x, h_x, w_x = X.size()
h_out = (h_x - h_filter + 2 * padding) / stride + 1
w_out = (w_x - w_filter + 2 * padding) / stride + 1
h_out, w_out = int(h_out), int(w_out)
X_col = torch.nn.functional.unfold(X.view(1, -1, h_x, w_x), h_filter, dilation=1, padding=padding, stride=stride).view(n_x, -1, h_out*w_out)
X_col = X_col.permute(1,2,0).contiguous().view(X_col.size(1),-1)
W_col = W.view(n_filters, -1)
out = adder.apply(W_col,X_col)
out = out.view(n_filters, h_out, w_out, n_x)
out = out.permute(3, 0, 1, 2).contiguous()
return out
class adder(Function):
@staticmethod
def forward(ctx, W_col, X_col):
ctx.save_for_backward(W_col,X_col)
output = -(W_col.unsqueeze(2)-X_col.unsqueeze(0)).abs().sum(1)
return output
@staticmethod
def backward(ctx,grad_output):
W_col,X_col = ctx.saved_tensors
grad_W_col = ((X_col.unsqueeze(0)-W_col.unsqueeze(2))*grad_output.unsqueeze(1)).sum(2)
grad_W_col = grad_W_col/grad_W_col.norm(p=2).clamp(min=1e-12)*math.sqrt(W_col.size(1)*W_col.size(0))/5
grad_X_col = (-(X_col.unsqueeze(0)-W_col.unsqueeze(2)).clamp(-1,1)*grad_output.unsqueeze(1)).sum(0)
return grad_W_col, grad_X_col
class adder2d(nn.Module):
def __init__(self,input_channel,output_channel,kernel_size, stride=1, padding=0, bias = False):
super(adder2d, self).__init__()
self.stride = stride
self.padding = padding
self.input_channel = input_channel
self.output_channel = output_channel
self.kernel_size = kernel_size
self.adder = torch.nn.Parameter(nn.init.normal_(torch.randn(output_channel,input_channel,kernel_size,kernel_size)))
self.bias = bias
if bias:
self.b = torch.nn.Parameter(nn.init.uniform_(torch.zeros(output_channel)))
def forward(self, x):
output = adder2d_function(x,self.adder, self.stride, self.padding)
if self.bias:
output += self.b.unsqueeze(0).unsqueeze(2).unsqueeze(3)
return output