-
Notifications
You must be signed in to change notification settings - Fork 1
/
swinl_coco.yaml
executable file
·65 lines (65 loc) · 1.55 KB
/
swinl_coco.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
MODEL:
META_ARCHITECTURE: "MDQE"
WEIGHTS: "pretrained/imagenet/swinv2_large_patch4_window12_192_22k_d2.pth"
PIXEL_MEAN: [ 123.675, 116.280, 103.530 ]
PIXEL_STD: [ 58.395, 57.120, 57.375 ]
MASK_ON: True
BACKBONE:
NAME: "build_swinv2_backbone"
SWIN:
EMBED_DIM: 192
DEPTHS: [ 2, 2, 18, 2 ]
NUM_HEADS: [ 6, 12, 24, 48 ]
WINDOW_SIZE: 12
MLP_RATIO: 4
DROP_PATH_RATE: 0.2
APE: False
MDQE:
NUM_OBJECT_QUERIES: 200
MLP_RATIO: 4
ENC_LAYERS: 6
DEC_LAYERS: 6
NUM_FEATURE_LEVELS: 4
DEC_TEMPORAL: True
HIDDEN_DIM: 192
NUM_CLASSES: 80
QUERY_EMBED_DIM: 64
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 0.00005
STEPS: (472000,) # 3x on 118k images in CoCo training data
MAX_ITER: 534000
WARMUP_FACTOR: 1.0
WARMUP_ITERS: 10
WEIGHT_DECAY: 0.05
OPTIMIZER: "ADAMW"
BACKBONE_MULTIPLIER: 0.1
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 0.01
NORM_TYPE: 2.0
INPUT:
FORMAT: "RGB"
SAMPLING_FRAME_NUM: 1
AUGMENTATIONS: []
RANDOM_FLIP: "flip_by_clip"
MIN_SIZE_TRAIN_SAMPLING: "choice_by_clip"
MIN_SIZE_TRAIN: (352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
CROP:
ENABLED: True
TYPE: "absolute_range"
SIZE: (384, 600)
TEST:
EVAL_PERIOD: 5000
DETECTIONS_PER_IMAGE: 100
DATALOADER:
FILTER_EMPTY_ANNOTATIONS: False
NUM_WORKERS: 4
VERSION: 2
OUTPUT_DIR: output/coco/mdqe_swinl_patch4_window24_384_22k_coco_bs8_3x_f1/