-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemma_ft_4bit.py
139 lines (122 loc) · 4.58 KB
/
gemma_ft_4bit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from dataclasses import dataclass
import torch
from datasets import Dataset
from transformers import (
Gemma2ForSequenceClassification,
GemmaTokenizerFast,
PreTrainedTokenizerBase,
EvalPrediction,
Trainer,
TrainingArguments,
DataCollatorWithPadding,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
from sklearn.metrics import log_loss, accuracy_score
@dataclass
class Config:
output_dir: str = "./output/gemma2"
checkpoint: str = "./cache/gemma2"
max_length: int = 2048
optim_type: str = "adamw_torch"
per_device_train_batch_size: int = 2
gradient_accumulation_steps: int = 2 # global batch size is 8
per_device_eval_batch_size: int = 2
n_epochs: int = 1
freeze_layers: int = 16 # there're 42 layers in total, we don't add adapters to the first 16 layers
lr: float = 2e-4
warmup_steps: int = 20
lora_r: int = 16
lora_alpha: float = lora_r * 2
lora_dropout: float = 0.05
lora_bias: str = "none"
config = Config()
training_args = TrainingArguments(
output_dir="./output/gemma2",
overwrite_output_dir=True,
report_to="tensorboard",
num_train_epochs=config.n_epochs,
per_device_train_batch_size=config.per_device_train_batch_size,
gradient_accumulation_steps=config.gradient_accumulation_steps,
per_device_eval_batch_size=config.per_device_eval_batch_size,
logging_steps=0.05,
eval_strategy="steps",
eval_steps=0.25,
save_strategy="epoch",
optim=config.optim_type,
bf16=True,
learning_rate=config.lr,
warmup_steps=config.warmup_steps,
lr_scheduler_type="cosine",
deepspeed="./scripts/zero3.json",
)
lora_config = LoraConfig(
r=config.lora_r,
lora_alpha=config.lora_alpha,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"],
layers_to_transform=[i for i in range(42) if i >= config.freeze_layers],
lora_dropout=config.lora_dropout,
bias=config.lora_bias,
task_type=TaskType.SEQ_CLS,
)
tokenizer = GemmaTokenizerFast.from_pretrained(config.checkpoint)
tokenizer.add_eos_token = True # We'll add <eos> at the end
tokenizer.padding_side = "right"
model = Gemma2ForSequenceClassification.from_pretrained(
config.checkpoint,
num_labels=3,
torch_dtype=torch.bfloat16,
)
model.config.use_cache = False
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, lora_config)
ds = Dataset.from_csv("/h3cstore_nt/pc_embedding/mm3d/LMSYS/data/train.csv")
class CustomTokenizer:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
max_length: int
) -> None:
self.tokenizer = tokenizer
self.max_length = max_length
def __call__(self, batch: dict) -> dict:
prompt = ["<prompt>: " + self.process_text(t) for t in batch["prompt"]]
response_a = ["\n\n<response_a>: " + self.process_text(t) for t in batch["response_a"]]
response_b = ["\n\n<response_b>: " + self.process_text(t) for t in batch["response_b"]]
texts = [p + r_a + r_b for p, r_a, r_b in zip(prompt, response_a, response_b)]
tokenized = self.tokenizer(texts, max_length=self.max_length, truncation=True)
labels=[]
for a_win, b_win in zip(batch["winner_model_a"], batch["winner_model_b"]):
if a_win:
label = 0
elif b_win:
label = 1
else:
label = 2
labels.append(label)
return {**tokenized, "labels": labels}
@staticmethod
def process_text(text: str) -> str:
return " ".join(eval(text, {"null": ""}))
encode = CustomTokenizer(tokenizer, max_length=config.max_length)
ds = ds.map(encode, batched=True, remove_columns=ds.column_names)
train_dataset, val_test_dataset = ds.train_test_split(test_size=0.2, shuffle=True, seed=42).values()
val_dataset, test_dataset = val_test_dataset.train_test_split(test_size=0.5, shuffle=True, seed=42).values()
del val_test_dataset
def compute_metrics(eval_preds: EvalPrediction) -> dict:
preds = eval_preds.predictions
labels = eval_preds.label_ids
probs = torch.from_numpy(preds).float().softmax(-1).numpy()
loss = log_loss(y_true=labels, y_pred=probs)
acc = accuracy_score(y_true=labels, y_pred=preds.argmax(-1))
return {"acc": acc, "log_loss": loss}
trainer = Trainer(
args=training_args,
model=model,
tokenizer=tokenizer,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
data_collator=DataCollatorWithPadding(tokenizer=tokenizer),
)
trainer.train()
print(trainer.evaluate())