-
Notifications
You must be signed in to change notification settings - Fork 2k
/
hook.py
1074 lines (895 loc) · 48.5 KB
/
hook.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import hashlib
import numpy as np
import torch.nn as nn
from functools import partial
from typing import Optional, Any, List
from scripts.logging import logger
from scripts.enums import (
ControlModelType,
AutoMachine,
HiResFixOption,
ControlNetUnionControlType,
)
from scripts.ipadapter.ipadapter_model import ImageEmbed
from scripts.controlnet_sparsectrl import SparseCtrl
from modules import devices, lowvram, shared, scripts
from ldm.modules.diffusionmodules.util import timestep_embedding, make_beta_schedule
from ldm.modules.diffusionmodules.openaimodel import UNetModel
from ldm.modules.attention import BasicTransformerBlock
from ldm.models.diffusion.ddpm import extract_into_tensor
from modules.prompt_parser import MulticondLearnedConditioning, ComposableScheduledPromptConditioning, ScheduledPromptConditioning
from modules.processing import StableDiffusionProcessing
try:
from sgm.modules.attention import BasicTransformerBlock as BasicTransformerBlockSGM
except ImportError:
print('Warning: ControlNet failed to load SGM - will use LDM instead.')
BasicTransformerBlockSGM = BasicTransformerBlock
cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x)
POSITIVE_MARK_TOKEN = 1024
NEGATIVE_MARK_TOKEN = - POSITIVE_MARK_TOKEN
MARK_EPS = 1e-3
def prompt_context_is_marked(x):
t = x[..., 0, :]
m = torch.abs(t) - POSITIVE_MARK_TOKEN
m = torch.mean(torch.abs(m)).detach().cpu().float().numpy()
return float(m) < MARK_EPS
def mark_prompt_context(x, positive):
if isinstance(x, list):
for i in range(len(x)):
x[i] = mark_prompt_context(x[i], positive)
return x
if isinstance(x, MulticondLearnedConditioning):
x.batch = mark_prompt_context(x.batch, positive)
return x
if isinstance(x, ComposableScheduledPromptConditioning):
x.schedules = mark_prompt_context(x.schedules, positive)
return x
if isinstance(x, ScheduledPromptConditioning):
if isinstance(x.cond, dict):
cond = x.cond['crossattn']
if prompt_context_is_marked(cond):
return x
mark = POSITIVE_MARK_TOKEN if positive else NEGATIVE_MARK_TOKEN
cond = torch.cat([torch.zeros_like(cond)[:1] + mark, cond], dim=0)
return ScheduledPromptConditioning(end_at_step=x.end_at_step, cond=dict(crossattn=cond, vector=x.cond['vector']))
else:
cond = x.cond
if prompt_context_is_marked(cond):
return x
mark = POSITIVE_MARK_TOKEN if positive else NEGATIVE_MARK_TOKEN
cond = torch.cat([torch.zeros_like(cond)[:1] + mark, cond], dim=0)
return ScheduledPromptConditioning(end_at_step=x.end_at_step, cond=cond)
return x
disable_controlnet_prompt_warning = True
# You can disable this warning using disable_controlnet_prompt_warning.
def unmark_prompt_context(x):
if not prompt_context_is_marked(x):
# ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
# You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
# Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
# if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
# if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
# After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
# After you mark the prompts, the mismatch errors will disappear.
if not disable_controlnet_prompt_warning:
logger.warning('ControlNet Error: Failed to detect whether an instance is cond or uncond!')
logger.warning('ControlNet Error: This is mainly because other extension(s) blocked A1111\'s \"process.sample()\" and deleted ControlNet\'s sample function.')
logger.warning('ControlNet Error: ControlNet will shift to a backup backend but the results will be worse than expectation.')
logger.warning('Solution (For extension developers): Take a look at ControlNet\' hook.py '
'UnetHook.hook.process_sample and manually call mark_prompt_context to mark cond/uncond prompts.')
mark_batch = torch.ones(size=(x.shape[0], 1, 1, 1), dtype=x.dtype, device=x.device)
context = x
return mark_batch, [], [], context
mark = x[:, 0, :]
context = x[:, 1:, :]
mark = torch.mean(torch.abs(mark - NEGATIVE_MARK_TOKEN), dim=1)
mark = (mark > MARK_EPS).float()
mark_batch = mark[:, None, None, None].to(x.dtype).to(x.device)
mark = mark.detach().cpu().numpy().tolist()
uc_indices = [i for i, item in enumerate(mark) if item < 0.5]
c_indices = [i for i, item in enumerate(mark) if not item < 0.5]
StableDiffusionProcessing.cached_c = [None, None]
StableDiffusionProcessing.cached_uc = [None, None]
return mark_batch, uc_indices, c_indices, context
class HackedImageRNG:
def __init__(self, rng, noise_modifier, sd_model):
self.rng = rng
self.noise_modifier = noise_modifier
self.sd_model = sd_model
def next(self):
result = self.rng.next()
x0 = self.noise_modifier
if result.shape[2] != x0.shape[2] or result.shape[3] != x0.shape[3]:
return result
x0 = x0.to(result.dtype).to(result.device)
ts = torch.tensor([999] * result.shape[0]).long().to(result.device)
result = predict_q_sample(self.sd_model, x0, ts, result)
logger.info(f'[ControlNet] Initial noise hack applied to {result.shape}.')
return result
class TorchHijackForUnet:
"""
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
"""
def __getattr__(self, item):
if item == 'cat':
return self.cat
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def cat(self, tensors, *args, **kwargs):
if len(tensors) == 2:
a, b = tensors
if a.shape[-2:] != b.shape[-2:]:
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
tensors = (a, b)
return torch.cat(tensors, *args, **kwargs)
th = TorchHijackForUnet()
class ControlParams:
def __init__(
self,
control_model,
preprocessor,
hint_cond,
weight,
guidance_stopped,
start_guidance_percent,
stop_guidance_percent,
advanced_weighting,
control_model_type,
hr_hint_cond,
global_average_pooling,
soft_injection,
cfg_injection,
hr_option: HiResFixOption = HiResFixOption.BOTH,
control_context_override: Optional[Any] = None,
effective_region_mask: Optional[torch.Tensor] = None,
union_control_types: List[ControlNetUnionControlType] = None,
**kwargs # To avoid errors
):
self.control_model = control_model
self.preprocessor = preprocessor
self._hint_cond = hint_cond
self.weight = weight
self.guidance_stopped = guidance_stopped
self.start_guidance_percent = start_guidance_percent
self.stop_guidance_percent = stop_guidance_percent
self.advanced_weighting = advanced_weighting
self.control_model_type = control_model_type
self.global_average_pooling = global_average_pooling
self.hr_hint_cond = hr_hint_cond
self.hr_option = hr_option
self.control_context_override = control_context_override
self.effective_region_mask = effective_region_mask
self.union_control_types = union_control_types or []
self.used_hint_cond = None
self.used_hint_cond_latent = None
self.used_hint_inpaint_hijack = None
self.soft_injection = soft_injection
self.cfg_injection = cfg_injection
self.vision_hint_count = None
@property
def hint_cond(self):
return self._hint_cond
# fix for all the extensions that modify hint_cond,
# by forcing used_hint_cond to update on the next timestep
# hr_hint_cond can stay the same, since most extensions dont modify the hires pass
# but if they do, it will cause problems
@hint_cond.setter
def hint_cond(self, new_hint_cond):
self._hint_cond = new_hint_cond
self.used_hint_cond = None
self.used_hint_cond_latent = None
self.used_hint_inpaint_hijack = None
def disabled_by_hr_option(self, is_in_high_res_fix: bool) -> bool:
if self.hr_option == HiResFixOption.BOTH:
control_disabled = False
elif self.hr_option == HiResFixOption.LOW_RES_ONLY:
control_disabled = is_in_high_res_fix
elif self.hr_option == HiResFixOption.HIGH_RES_ONLY:
control_disabled = not is_in_high_res_fix
else:
assert False, "NOTREACHED"
return control_disabled
def apply_effective_region_mask(self, out: torch.Tensor) -> torch.Tensor:
if self.effective_region_mask is None:
return out
B, C, H, W = out.shape
mask = torch.nn.functional.interpolate(
self.effective_region_mask.to(out.device),
size=(H, W),
mode="bilinear",
)
return out * mask
def aligned_adding(base, x, require_channel_alignment):
if isinstance(x, float):
if x == 0.0:
return base
return base + x
if require_channel_alignment:
zeros = torch.zeros_like(base)
zeros[:, :x.shape[1], ...] = x
x = zeros
# resize to sample resolution
base_h, base_w = base.shape[-2:]
xh, xw = x.shape[-2:]
if xh > 1 or xw > 1:
if base_h != xh or base_w != xw:
# logger.info('[Warning] ControlNet finds unexpected mis-alignment in tensor shape.')
x = th.nn.functional.interpolate(x, size=(base_h, base_w), mode="nearest")
return base + x
# DFS Search for Torch.nn.Module, Written by Lvmin
def torch_dfs(model: torch.nn.Module):
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
class AbstractLowScaleModel(nn.Module):
def __init__(self):
super(AbstractLowScaleModel, self).__init__()
self.register_schedule()
def register_schedule(self, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start), t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start), t, x_start.shape) * noise)
def register_schedule(self):
linear_start = 0.00085
linear_end = 0.0120
num_timesteps = 1000
betas = (torch.linspace(linear_start ** 0.5, linear_end ** 0.5, num_timesteps, dtype=torch.float64) ** 2.0).numpy()
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
to_torch = partial(torch.tensor, dtype=torch.float32)
setattr(self, 'betas', to_torch(betas))
# setattr(self, 'alphas_cumprod', to_torch(alphas_cumprod)) # a1111 already has this
setattr(self, 'alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
setattr(self, 'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
setattr(self, 'sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
setattr(self, 'log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
setattr(self, 'sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
setattr(self, 'sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
def predict_q_sample(ldm, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
return extract_into_tensor(ldm.sqrt_alphas_cumprod.to(x_start), t, x_start.shape) * x_start + extract_into_tensor(ldm.sqrt_one_minus_alphas_cumprod.to(x_start), t, x_start.shape) * noise
def predict_start_from_noise(ldm, x_t, t, noise):
return extract_into_tensor(ldm.sqrt_recip_alphas_cumprod.to(x_t), t, x_t.shape) * x_t - extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod.to(x_t), t, x_t.shape) * noise
def predict_noise_from_start(ldm, x_t, t, x0):
return (extract_into_tensor(ldm.sqrt_recip_alphas_cumprod.to(x_t), t, x_t.shape) * x_t - x0) / extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod.to(x_t), t, x_t.shape)
def blur(x, k):
y = torch.nn.functional.pad(x, (k, k, k, k), mode='replicate')
y = torch.nn.functional.avg_pool2d(y, (k*2+1, k*2+1), stride=(1, 1))
return y
class TorchCache:
def __init__(self):
self.cache = {}
def hash(self, key):
v = key.detach().cpu().numpy().astype(np.float32)
v = (v * 1000.0).astype(np.int32)
v = np.ascontiguousarray(v.copy())
sha = hashlib.sha1(v).hexdigest()
return sha
def get(self, key):
key = self.hash(key)
return self.cache.get(key, None)
def set(self, key, value):
self.cache[self.hash(key)] = value
class UnetHook(nn.Module):
def __init__(self, lowvram=False) -> None:
super().__init__()
self.lowvram = lowvram
self.model = None
self.sd_ldm = None
self.control_params = None
self.attention_auto_machine = AutoMachine.Read
self.attention_auto_machine_weight = 1.0
self.gn_auto_machine = AutoMachine.Read
self.gn_auto_machine_weight = 1.0
self.current_style_fidelity = 0.0
self.current_uc_indices = []
self.current_c_indices = []
self.is_in_high_res_fix = False
@staticmethod
def call_vae_using_process(p, x, batch_size=None, mask=None):
vae_cache = getattr(p, 'controlnet_vae_cache', None)
if vae_cache is None:
vae_cache = TorchCache()
setattr(p, 'controlnet_vae_cache', vae_cache)
try:
if x.shape[1] > 3:
x = x[:, 0:3, :, :]
x = x * 2.0 - 1.0
if mask is not None:
x = x * (1.0 - mask)
x = x.type(devices.dtype_vae)
vae_output = vae_cache.get(x)
if vae_output is None:
with devices.autocast():
vae_output = torch.stack([
p.sd_model.get_first_stage_encoding(
p.sd_model.encode_first_stage(torch.unsqueeze(img, 0).to(device=devices.device))
)[0].to(img.device)
for img in x
])
if torch.all(torch.isnan(vae_output)).item():
logger.info('ControlNet find Nans in the VAE encoding. \n '
'Now ControlNet will automatically retry.\n '
'To always start with 32-bit VAE, use --no-half-vae commandline flag.')
devices.dtype_vae = torch.float32
x = x.to(devices.dtype_vae)
p.sd_model.first_stage_model.to(devices.dtype_vae)
vae_output = torch.stack([
p.sd_model.get_first_stage_encoding(
p.sd_model.encode_first_stage(torch.unsqueeze(img, 0).to(device=devices.device))
)[0].to(img.device)
for img in x
])
vae_cache.set(x, vae_output)
logger.info(f'ControlNet used {str(devices.dtype_vae)} VAE to encode {vae_output.shape}.')
latent = vae_output
if batch_size is not None and latent.shape[0] != batch_size:
latent = torch.cat([latent.clone() for _ in range(batch_size)], dim=0)
latent = latent.type(devices.dtype_unet)
return latent
except Exception as e:
logger.error(e)
raise ValueError('ControlNet failed to use VAE. Please try to add `--no-half-vae`, `--no-half` and remove `--precision full` in launch cmd.')
def guidance_schedule_handler(self, x):
if not self.control_params:
return
for param in self.control_params:
current_sampling_percent = (x.sampling_step / x.total_sampling_steps)
param.guidance_stopped = current_sampling_percent < param.start_guidance_percent or current_sampling_percent > param.stop_guidance_percent
if self.model is not None:
self.model.current_sampling_percent = current_sampling_percent
def hook(self, model, sd_ldm, control_params: List[ControlParams], process, batch_option_uint_separate=False, batch_option_style_align=False):
self.model = model
self.sd_ldm = sd_ldm
self.control_params = control_params
model_is_sdxl = getattr(self.sd_ldm, 'is_sdxl', False)
outer = self
def process_sample(*args, **kwargs):
# ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
# You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
# Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
# if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
# if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
# After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
# After you mark the prompts, the mismatch errors will disappear.
mark_prompt_context(kwargs.get('conditioning', []), positive=True)
mark_prompt_context(kwargs.get('unconditional_conditioning', []), positive=False)
mark_prompt_context(getattr(process, 'hr_c', []), positive=True)
mark_prompt_context(getattr(process, 'hr_uc', []), positive=False)
return process.sample_before_CN_hack(*args, **kwargs)
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
is_sdxl = y is not None and model_is_sdxl
total_t2i_adapter_embedding = [0.0] * 4
if is_sdxl:
total_controlnet_embedding = [0.0] * 10
else:
total_controlnet_embedding = [0.0] * 13
require_inpaint_hijack = False
is_in_high_res_fix = False
batch_size = int(x.shape[0])
# Handle cond-uncond marker
cond_mark, outer.current_uc_indices, outer.current_c_indices, context = unmark_prompt_context(context)
outer.model.cond_mark = cond_mark
# logger.info(str(cond_mark[:, 0, 0, 0].detach().cpu().numpy().tolist()) + ' - ' + str(outer.current_uc_indices))
# Revision
if is_sdxl:
revision_y1280 = 0
for param in outer.control_params:
if param.guidance_stopped:
continue
if param.control_model_type == ControlModelType.ReVision:
if param.vision_hint_count is None:
k = torch.Tensor([int(param.preprocessor['threshold_a'] * 1000)]).to(param.hint_cond).long().clip(0, 999)
param.vision_hint_count = outer.revision_q_sampler.q_sample(param.hint_cond, k)
revision_emb = param.vision_hint_count
if isinstance(revision_emb, torch.Tensor):
revision_y1280 += revision_emb * param.weight
if isinstance(revision_y1280, torch.Tensor):
y[:, :1280] = revision_y1280 * cond_mark[:, :, 0, 0]
if any('ignore_prompt' in param.preprocessor['name'] for param in outer.control_params) \
or (getattr(process, 'prompt', '') == '' and getattr(process, 'negative_prompt', '') == ''):
context = torch.zeros_like(context)
# High-res fix
for param in outer.control_params:
# select which hint_cond to use
if param.used_hint_cond is None:
param.used_hint_cond = param.hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
# has high-res fix
if isinstance(param.hr_hint_cond, torch.Tensor) and x.ndim == 4 and param.hint_cond.ndim == 4 and param.hr_hint_cond.ndim == 4:
_, _, h_lr, w_lr = param.hint_cond.shape
_, _, h_hr, w_hr = param.hr_hint_cond.shape
_, _, h, w = x.shape
h, w = h * 8, w * 8
if abs(h - h_lr) < abs(h - h_hr):
is_in_high_res_fix = False
if param.used_hint_cond is not param.hint_cond:
param.used_hint_cond = param.hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
else:
is_in_high_res_fix = True
if param.used_hint_cond is not param.hr_hint_cond:
param.used_hint_cond = param.hr_hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
self.is_in_high_res_fix = is_in_high_res_fix
outer.is_in_high_res_fix = is_in_high_res_fix
# Convert control image to latent
for param in outer.control_params:
if param.used_hint_cond_latent is not None:
continue
if param.control_model_type not in [ControlModelType.AttentionInjection] \
and 'colorfix' not in param.preprocessor['name'] \
and 'inpaint_only' not in param.preprocessor['name']:
continue
param.used_hint_cond_latent = outer.call_vae_using_process(process, param.used_hint_cond, batch_size=batch_size)
# vram
for param in outer.control_params:
if getattr(param.control_model, 'disable_memory_management', False):
continue
if param.control_model is not None:
if outer.lowvram and is_sdxl and hasattr(param.control_model, 'aggressive_lowvram'):
param.control_model.aggressive_lowvram()
elif hasattr(param.control_model, 'fullvram'):
param.control_model.fullvram()
elif hasattr(param.control_model, 'to'):
param.control_model.to(devices.get_device_for("controlnet"))
# handle prompt token control
for param in outer.control_params:
if param.guidance_stopped or param.disabled_by_hr_option(self.is_in_high_res_fix):
continue
if param.control_model_type not in [ControlModelType.T2I_StyleAdapter]:
continue
control = param.control_model(x=x, hint=param.used_hint_cond, timesteps=timesteps, context=context)
control = torch.cat([control.clone() for _ in range(batch_size)], dim=0)
control *= param.weight
control *= cond_mark[:, :, :, 0]
context = torch.cat([context, control.clone()], dim=1)
# handle ControlNet / T2I_Adapter
for param_index, param in enumerate(outer.control_params):
if param.guidance_stopped or param.disabled_by_hr_option(self.is_in_high_res_fix):
continue
if not (
param.control_model_type.is_controlnet or
param.control_model_type == ControlModelType.T2I_Adapter
):
continue
# inpaint model workaround
x_in = x
control_model = param.control_model.control_model
if param.control_model_type.is_controlnet:
if x.shape[1] != control_model.input_blocks[0][0].in_channels and x.shape[1] == 9:
# inpaint_model: 4 data + 4 downscaled image + 1 mask
x_in = x[:, :4, ...]
require_inpaint_hijack = True
assert param.used_hint_cond is not None, "Controlnet is enabled but no input image is given"
hint = param.used_hint_cond
if param.control_model_type == ControlModelType.InstantID:
assert isinstance(param.control_context_override, ImageEmbed)
controlnet_context = param.control_context_override.eval(cond_mark).to(x.device, dtype=x.dtype)
else:
controlnet_context = context
# ControlNet inpaint protocol
if hint.shape[1] == 4 and not isinstance(control_model, SparseCtrl):
c = hint[:, 0:3, :, :]
m = hint[:, 3:4, :, :]
m = (m > 0.5).float()
hint = c * (1 - m) - m
control = param.control_model(
x=x_in,
hint=hint,
timesteps=timesteps,
context=controlnet_context,
y=y,
control_type=(
[
t.int_value()
for t in param.union_control_types
if t != ControlNetUnionControlType.UNKNOWN
]
if param.control_model_type == ControlModelType.ControlNetUnion
else None
),
)
if is_sdxl:
control_scales = [param.weight] * 10
else:
control_scales = [param.weight] * 13
if param.cfg_injection or param.global_average_pooling:
if param.control_model_type == ControlModelType.T2I_Adapter:
control = [torch.cat([c.clone() for _ in range(batch_size)], dim=0) for c in control]
control = [c * cond_mark for c in control]
high_res_fix_forced_soft_injection = False
if is_in_high_res_fix:
if 'canny' in param.preprocessor['name']:
high_res_fix_forced_soft_injection = True
if 'mlsd' in param.preprocessor['name']:
high_res_fix_forced_soft_injection = True
if param.soft_injection or high_res_fix_forced_soft_injection:
# important! use the soft weights with high-res fix can significantly reduce artifacts.
if param.control_model_type == ControlModelType.T2I_Adapter:
control_scales = [param.weight * x for x in (0.25, 0.62, 0.825, 1.0)]
elif param.control_model_type.is_controlnet:
control_scales = [param.weight * (0.825 ** float(12 - i)) for i in range(13)]
if is_sdxl and param.control_model_type.is_controlnet:
control_scales = control_scales[:10]
if param.advanced_weighting is not None:
logger.info(f"Advanced weighting enabled. {param.advanced_weighting}")
if param.soft_injection or high_res_fix_forced_soft_injection:
logger.warn("Advanced weighting overwrites soft_injection effect.")
control_scales = param.advanced_weighting
control = [
param.apply_effective_region_mask(c * scale)
for c, scale
in zip(control, control_scales)
]
if param.global_average_pooling:
control = [torch.mean(c, dim=(2, 3), keepdim=True) for c in control]
for idx, item in enumerate(control):
target = None
if param.control_model_type.is_controlnet:
target = total_controlnet_embedding
if param.control_model_type == ControlModelType.T2I_Adapter:
target = total_t2i_adapter_embedding
if target is not None:
if batch_option_uint_separate:
for pi, ci in enumerate(outer.current_c_indices):
if pi % len(outer.control_params) != param_index:
item[ci] = 0
for pi, ci in enumerate(outer.current_uc_indices):
if pi % len(outer.control_params) != param_index:
item[ci] = 0
target[idx] = item + target[idx]
else:
target[idx] = item + target[idx]
# Replace x_t to support inpaint models
for param in outer.control_params:
if not isinstance(param.used_hint_cond, torch.Tensor):
continue
if param.used_hint_cond.ndim < 2 or param.used_hint_cond.shape[1] != 4:
continue
if x.shape[1] != 9:
continue
if param.used_hint_inpaint_hijack is None:
mask_pixel = param.used_hint_cond[:, 3:4, :, :]
image_pixel = param.used_hint_cond[:, 0:3, :, :]
mask_pixel = (mask_pixel > 0.5).to(mask_pixel.dtype)
masked_latent = outer.call_vae_using_process(process, image_pixel, batch_size, mask=mask_pixel)
mask_latent = torch.nn.functional.max_pool2d(mask_pixel, (8, 8))
if mask_latent.shape[0] != batch_size:
mask_latent = torch.cat([mask_latent.clone() for _ in range(batch_size)], dim=0)
param.used_hint_inpaint_hijack = torch.cat([mask_latent, masked_latent], dim=1)
param.used_hint_inpaint_hijack.to(x.dtype).to(x.device)
x = torch.cat([x[:, :4, :, :], param.used_hint_inpaint_hijack], dim=1)
# vram
for param in outer.control_params:
if param.control_model is not None:
if outer.lowvram:
param.control_model.to('cpu')
# A1111 fix for medvram.
if shared.cmd_opts.medvram or (getattr(shared.cmd_opts, 'medvram_sdxl', False) and is_sdxl):
try:
# Trigger the register_forward_pre_hook
outer.sd_ldm.model()
except Exception as e:
logger.debug("register_forward_pre_hook")
logger.debug(e)
# Clear attention and AdaIn cache
for module in outer.attn_module_list:
module.bank = []
module.style_cfgs = []
for module in outer.gn_module_list:
module.mean_bank = []
module.var_bank = []
module.style_cfgs = []
# Handle attention and AdaIn control
for param in outer.control_params:
if param.guidance_stopped or param.disabled_by_hr_option(self.is_in_high_res_fix):
continue
if param.used_hint_cond_latent is None:
continue
if param.control_model_type not in [ControlModelType.AttentionInjection]:
continue
ref_xt = predict_q_sample(outer.sd_ldm, param.used_hint_cond_latent, torch.round(timesteps.float()).long())
# Inpaint Hijack
if x.shape[1] == 9:
ref_xt = torch.cat([
ref_xt,
torch.zeros_like(ref_xt)[:, 0:1, :, :],
param.used_hint_cond_latent
], dim=1)
outer.current_style_fidelity = float(param.preprocessor['threshold_a'])
outer.current_style_fidelity = max(0.0, min(1.0, outer.current_style_fidelity))
if is_sdxl:
# sdxl's attention hacking is highly unstable.
# We have no other methods but to reduce the style_fidelity a bit.
# By default, 0.5 ** 3.0 = 0.125
outer.current_style_fidelity = outer.current_style_fidelity ** 3.0
if param.cfg_injection:
outer.current_style_fidelity = 1.0
elif param.soft_injection or is_in_high_res_fix:
outer.current_style_fidelity = 0.0
control_name = param.preprocessor['name']
if control_name in ['reference_only', 'reference_adain+attn']:
outer.attention_auto_machine = AutoMachine.Write
outer.attention_auto_machine_weight = param.weight
if control_name in ['reference_adain', 'reference_adain+attn']:
outer.gn_auto_machine = AutoMachine.Write
outer.gn_auto_machine_weight = param.weight
if is_sdxl:
outer.original_forward(
x=ref_xt.to(devices.dtype_unet),
timesteps=timesteps.to(devices.dtype_unet),
context=context.to(devices.dtype_unet),
y=y
)
else:
outer.original_forward(
x=ref_xt.to(devices.dtype_unet),
timesteps=timesteps.to(devices.dtype_unet),
context=context.to(devices.dtype_unet)
)
outer.attention_auto_machine = AutoMachine.Read
outer.gn_auto_machine = AutoMachine.Read
# U-Net Encoder
hs = []
with th.no_grad():
t_emb = cond_cast_unet(timestep_embedding(timesteps, self.model_channels, repeat_only=False))
emb = self.time_embed(t_emb)
if is_sdxl:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for i, module in enumerate(self.input_blocks):
self.current_h_shape = (h.shape[0], h.shape[1], h.shape[2], h.shape[3])
h = module(h, emb, context)
t2i_injection = [3, 5, 8] if is_sdxl else [2, 5, 8, 11]
if i in t2i_injection:
h = aligned_adding(h, total_t2i_adapter_embedding.pop(0), require_inpaint_hijack)
hs.append(h)
self.current_h_shape = (h.shape[0], h.shape[1], h.shape[2], h.shape[3])
h = self.middle_block(h, emb, context)
# U-Net Middle Block
h = aligned_adding(h, total_controlnet_embedding.pop(), require_inpaint_hijack)
if len(total_t2i_adapter_embedding) > 0 and is_sdxl:
h = aligned_adding(h, total_t2i_adapter_embedding.pop(0), require_inpaint_hijack)
# U-Net Decoder
for i, module in enumerate(self.output_blocks):
self.current_h_shape = (h.shape[0], h.shape[1], h.shape[2], h.shape[3])
h = th.cat([h, aligned_adding(hs.pop(), total_controlnet_embedding.pop(), require_inpaint_hijack)], dim=1)
h = module(h, emb, context)
# U-Net Output
h = h.type(x.dtype)
h = self.out(h)
# Post-processing for color fix
for param in outer.control_params:
if param.used_hint_cond_latent is None:
continue
if 'colorfix' not in param.preprocessor['name']:
continue
k = int(param.preprocessor['threshold_a'])
if is_in_high_res_fix and not param.disabled_by_hr_option(self.is_in_high_res_fix):
k *= 2
# Inpaint hijack
xt = x[:, :4, :, :]
x0_origin = param.used_hint_cond_latent
t = torch.round(timesteps.float()).long()
x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
x0 = x0_prd - blur(x0_prd, k) + blur(x0_origin, k)
if '+sharp' in param.preprocessor['name']:
detail_weight = float(param.preprocessor['threshold_b']) * 0.01
neg = detail_weight * blur(x0, k) + (1 - detail_weight) * x0
x0 = cond_mark * x0 + (1 - cond_mark) * neg
eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
w = max(0.0, min(1.0, float(param.weight)))
h = eps_prd * w + h * (1 - w)
# Post-processing for restore
for param in outer.control_params:
if param.used_hint_cond_latent is None:
continue
if 'inpaint_only' not in param.preprocessor['name']:
continue
if param.used_hint_cond.shape[1] != 4:
continue
# Inpaint hijack
xt = x[:, :4, :, :]
mask = param.used_hint_cond[:, 3:4, :, :]
mask = torch.nn.functional.max_pool2d(mask, (10, 10), stride=(8, 8), padding=1)
x0_origin = param.used_hint_cond_latent
t = torch.round(timesteps.float()).long()
x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
x0 = x0_prd * mask + x0_origin * (1 - mask)
eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
w = max(0.0, min(1.0, float(param.weight)))
h = eps_prd * w + h * (1 - w)
return h
def move_all_control_model_to_cpu():
for param in getattr(outer, 'control_params', []) or []:
if isinstance(param.control_model, torch.nn.Module):
param.control_model.to("cpu")
def forward_webui(*args, **kwargs):
# webui will handle other compoments
try:
if shared.cmd_opts.lowvram:
lowvram.send_everything_to_cpu()
return forward(*args, **kwargs)
except Exception as e:
move_all_control_model_to_cpu()
raise e
finally:
if outer.lowvram:
move_all_control_model_to_cpu()
def hacked_basic_transformer_inner_forward(self, x, context=None):
x_norm1 = self.norm1(x)
self_attn1 = None
if self.disable_self_attn:
# Do not use self-attention
self_attn1 = self.attn1(x_norm1, context=context)
else:
# Use self-attention
self_attention_context = x_norm1
if outer.attention_auto_machine == AutoMachine.Write:
if outer.attention_auto_machine_weight > self.attn_weight:
self.bank.append(self_attention_context.detach().clone())
self.style_cfgs.append(outer.current_style_fidelity)
if outer.attention_auto_machine == AutoMachine.Read:
if len(self.bank) > 0:
style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
self_attn1_uc = self.attn1(x_norm1, context=torch.cat([self_attention_context] + self.bank, dim=1))
self_attn1_c = self_attn1_uc.clone()
if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
self_attn1_c[outer.current_uc_indices] = self.attn1(
x_norm1[outer.current_uc_indices],
context=self_attention_context[outer.current_uc_indices])
self_attn1 = style_cfg * self_attn1_c + (1.0 - style_cfg) * self_attn1_uc
self.bank = []
self.style_cfgs = []
if outer.attention_auto_machine == AutoMachine.StyleAlign and not outer.is_in_high_res_fix:
# very VRAM hungry - disable at high_res_fix
def shared_attn1(inner_x):
BB, FF, CC = inner_x.shape
return self.attn1(inner_x.reshape(1, BB * FF, CC)).reshape(BB, FF, CC)
uc_layer = shared_attn1(x_norm1[outer.current_uc_indices])
c_layer = shared_attn1(x_norm1[outer.current_c_indices])
self_attn1 = torch.zeros_like(x_norm1).to(uc_layer)
self_attn1[outer.current_uc_indices] = uc_layer
self_attn1[outer.current_c_indices] = c_layer
del uc_layer, c_layer
if self_attn1 is None:
self_attn1 = self.attn1(x_norm1, context=self_attention_context)
x = self_attn1.to(x.dtype) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
def hacked_group_norm_forward(self, *args, **kwargs):
eps = 1e-6
x = self.original_forward_cn_hijack(*args, **kwargs)
y = None
if outer.gn_auto_machine == AutoMachine.Write:
if outer.gn_auto_machine_weight > self.gn_weight:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append(mean)
self.var_bank.append(var)
self.style_cfgs.append(outer.current_style_fidelity)
if outer.gn_auto_machine == AutoMachine.Read:
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
var_acc = sum(self.var_bank) / float(len(self.var_bank))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
y_uc = (((x - mean) / std) * std_acc) + mean_acc
y_c = y_uc.clone()
if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
y_c[outer.current_uc_indices] = x.to(y_c.dtype)[outer.current_uc_indices]
y = style_cfg * y_c + (1.0 - style_cfg) * y_uc
self.mean_bank = []
self.var_bank = []
self.style_cfgs = []
if y is None:
y = x
return y.to(x.dtype)
if getattr(process, 'sample_before_CN_hack', None) is None:
process.sample_before_CN_hack = process.sample
process.sample = process_sample
model._original_forward = model.forward
outer.original_forward = model.forward
model.forward = forward_webui.__get__(model, UNetModel)
if model_is_sdxl:
register_schedule(sd_ldm)
outer.revision_q_sampler = AbstractLowScaleModel()
need_attention_hijack = False
for param in outer.control_params: