forked from wmcnally/deep-darts
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathstream.py
54 lines (45 loc) · 1.49 KB
/
stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import argparse
from yacs.config import CfgNode as CN
import os.path as osp
import os
from dataloader import get_splits
import cv2
import numpy as np
from time import time
from dataset.annotate import draw, get_dart_scores
import pickle
from predict import bboxes_to_xy
def predict_stream(yolo):
cam = cv2.VideoCapture(0)
print(cam.get(cv2.CAP_PROP_FRAME_WIDTH))
print(cam.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(cam.get(cv2.CAP_PROP_FPS))
i = 0
while True:
check, frame = cam.read()
# Resize frame to 800x800
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = img[50:1000, 400:1000]
img = cv2.resize(img, (800, 800))
bboxes = yolo.predict(img)
preds = bboxes_to_xy(bboxes, 3)
xy = preds
xy = xy[xy[:, -1] == 1]
img = draw(cv2.cvtColor(img, cv2.COLOR_RGB2BGR), xy[:, :2], cfg, circles=False, score=True)
cv2.imshow('video', img)
key = cv2.waitKey(1)
if key == 'z':
break
cam.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
from train import build_model
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--cfg', default='deepdarts_utrecht')
args = parser.parse_args()
cfg = CN(new_allowed=True)
cfg.merge_from_file(osp.join('configs', args.cfg + '.yaml'))
cfg.model.name = args.cfg
yolo = build_model(cfg)
yolo.load_weights(osp.join('models', args.cfg, 'weights'), cfg.model.weights_type)
predict_stream(yolo)