-
Notifications
You must be signed in to change notification settings - Fork 0
/
article_replication_short.html
1047 lines (1027 loc) · 157 KB
/
article_replication_short.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title></title>
<style type="text/css">
/**
* Prism.s theme ported from highlight.js's xcode style
*/
pre code {
padding: 1em;
}
.token.comment {
color: #007400;
}
.token.punctuation {
color: #999;
}
.token.tag,
.token.selector {
color: #aa0d91;
}
.token.boolean,
.token.number,
.token.constant,
.token.symbol {
color: #1c00cf;
}
.token.property,
.token.attr-name,
.token.string,
.token.char,
.token.builtin {
color: #c41a16;
}
.token.inserted {
background-color: #ccffd8;
}
.token.deleted {
background-color: #ffebe9;
}
.token.operator,
.token.entity,
.token.url,
.language-css .token.string,
.style .token.string {
color: #9a6e3a;
}
.token.atrule,
.token.attr-value,
.token.keyword {
color: #836c28;
}
.token.function,
.token.class-name {
color: #DD4A68;
}
.token.regex,
.token.important,
.token.variable {
color: #5c2699;
}
.token.important,
.token.bold {
font-weight: bold;
}
.token.italic {
font-style: italic;
}
</style>
<style type="text/css">
body {
font-family: sans-serif;
max-width: 800px;
margin: auto;
padding: 1em;
line-height: 1.5;
box-sizing: border-box;
}
body, .footnotes, code { font-size: .9em; }
li li { font-size: .95em; }
*, *:before, *:after {
box-sizing: inherit;
}
pre, img { max-width: 100%; }
pre, pre:hover {
white-space: pre-wrap;
word-break: break-all;
}
pre code {
display: block;
overflow-x: auto;
}
code { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; }
:not(pre) > code, code[class] { background-color: #F8F8F8; }
code.language-undefined, pre > code:not([class]) {
background-color: inherit;
border: 1px solid #eee;
}
table {
margin: auto;
border-top: 1px solid #666;
}
table thead th { border-bottom: 1px solid #ddd; }
th, td { padding: 5px; }
thead, tfoot, tr:nth-child(even) { background: #eee; }
blockquote {
color: #666;
margin: 0;
padding-left: 1em;
border-left: 0.5em solid #eee;
}
hr, .footnotes::before { border: 1px dashed #ddd; }
.frontmatter { text-align: center; }
#TOC .numbered li { list-style: none; }
#TOC .numbered { padding-left: 0; }
#TOC .numbered ul { padding-left: 1em; }
table, .body h2 { border-bottom: 1px solid #666; }
.body .appendix, .appendix ~ h2 { border-bottom-style: dashed; }
.footnote-ref a::before { content: "["; }
.footnote-ref a::after { content: "]"; }
.footnotes::before {
content: "";
display: block;
max-width: 20em;
}
@media print {
body {
font-size: 12pt;
max-width: 100%;
}
tr, img { page-break-inside: avoid; }
}
@media only screen and (min-width: 992px) {
pre { white-space: pre; }
}
</style>
</head>
<body>
<div class="include-before">
</div>
<div class="frontmatter">
<div class="title"><h1></h1></div>
<div class="author"><h2></h2></div>
<div class="date"><h3></h3></div>
</div>
<div class="body">
<p>Replication output for article, “hermiter: R package for Sequential
Nonparametric Estimation”. The output below corresponds to the output
produced by running knitr::spin() on the article_replication.R script,
with short_run set to TRUE.</p>
<p>Load libraries.</p>
<pre><code class="language-r">options(dplyr.summarise.inform = F)
if(!require(benchden)) devtools::install_github("thmild/benchden")
library(hermiter)
library(tdigest)
library(microbenchmark)
library(dplyr)
library(randtoolbox)
library(ggplot2)
library(patchwork)
library(arrow)
library(colorspace)
</code></pre>
<p>Choose whether to run quick version of reproduction script i.e. under
an hour of processing time on hardware specified in manuscript versus
full version which would take several hours of run-time.</p>
<pre><code class="language-r">short_run <- TRUE
if (short_run == TRUE){
total_number_of_runs <- 10
} else {
total_number_of_runs <- 100
}
</code></pre>
<p>Set random seed for reproducibility.</p>
<pre><code class="language-r">set.seed(10)
</code></pre>
<p>Reproduce the output of the merge code blocks in section 8.5
First block with standardize = FALSE</p>
<pre><code class="language-r">observations_1 <- rlogis(n=1000)
observations_2 <- rlogis(n=1000)
hermite_est_1 <- hermite_estimator(N=50,standardize=FALSE,
observations = observations_1)
hermite_est_2 <- hermite_estimator(N=50,standardize=FALSE,
observations = observations_2)
hermite_est_merged <- merge_hermite(list(hermite_est_1,
hermite_est_2))
hermite_est_full <- hermite_estimator(N=50,standardize=FALSE,observations =
c(observations_1,observations_2))
all.equal(hermite_est_merged,hermite_est_full)
</code></pre>
<pre><code>## [1] TRUE
</code></pre>
<p>Second block with standardize = TRUE</p>
<pre><code class="language-r">observations_1 <- rlogis(n=1000)
observations_2 <- rlogis(n=1000)
hermite_est_1 <- hermite_estimator(N=50,standardize=TRUE,observations=observations_1)
hermite_est_2 <- hermite_estimator(N=50,standardize=TRUE,observations=observations_2)
hermite_est_merged <- merge_hermite(list(hermite_est_1,hermite_est_2))
hermite_est_full <- hermite_estimator(N=50,standardize=TRUE,observations =
c(observations_1,observations_2))
all.equal(hermite_est_merged,hermite_est_full)
</code></pre>
<pre><code>## [1] "Component \"coeff_vec\": Mean relative difference: 0.006074491"
</code></pre>
<p>Reproduce univariate PDF, CDF and Q-Q plot figures i.e. <strong>Figures 1, 2, 3</strong>
in the text respectively.</p>
<pre><code class="language-r">observations <- rlogis(n=5000)
hermite_est <- hermite_estimator(observations = observations)
x <- seq(-15,15,0.1)
pdf_est <- dens(hermite_est,x)
cdf_est <- cum_prob(hermite_est,x)
p <- seq(0.05,0.95,0.05)
quantile_est <- quant(hermite_est,p)
actual_pdf <- dlogis(x)
actual_cdf <- plogis(x)
df_pdf_cdf <- data.frame(x,pdf_est,cdf_est,actual_pdf,actual_cdf)
actual_quantiles <- qlogis(p)
df_quant <- data.frame(p,quantile_est,actual_quantiles)
pdf_comp_plot <- ggplot(df_pdf_cdf,aes(x=x)) +
geom_line(aes(y=pdf_est, colour="Estimated")) +
geom_line(aes(y=actual_pdf, colour="Actual")) +
scale_colour_manual("",
breaks = c("Estimated", "Actual"),
values = c("blue", "black")) + ylab("Probability Density")
pdf_comp_plot / (ggplot(df_pdf_cdf,aes(x=x,y=pdf_est-actual_pdf)) +
geom_line(color="red")+ ylab("Estimated - Actual"))
</code></pre>
<p><img src="" alt="plot of chunk reproduce_univar" /></p>
<pre><code class="language-r">cdf_comp_plot <- ggplot(df_pdf_cdf,aes(x=x)) +
geom_line(aes(y=cdf_est, colour="Estimated")) +
geom_line(aes(y=actual_cdf, colour="Actual")) +
scale_colour_manual("",
breaks = c("Estimated", "Actual"),
values = c("blue", "black")) +
ylab("Cumulative Probability")
cdf_comp_plot / (ggplot(df_pdf_cdf,aes(x=x,y=cdf_est-actual_cdf)) +
geom_line(color="red")+ ylab("Estimated - Actual"))
</code></pre>
<p><img src="" alt="plot of chunk reproduce_univar" /></p>
<pre><code class="language-r">quantile_comp_plot <-ggplot(df_quant,aes(x=actual_quantiles)) +
geom_point(aes(y=quantile_est), color="blue") +
geom_abline(slope=1,intercept = 0) +xlab("Theoretical Quantiles") +
ylab("Estimated Quantiles")
quantile_comp_plot / (ggplot(df_quant,aes(x=p,y=quantile_est-
actual_quantiles)) + geom_point(color="red") +
ylab("Estimated - Actual"))
</code></pre>
<p><img src="" alt="plot of chunk reproduce_univar" /></p>
<p>Reproduce bivariate PDF, CDF figures, namely <strong>Figure 4</strong> and <strong>Figure 5</strong> in
the text respectively.</p>
<pre><code class="language-r">sig_x <- 1
sig_y <- 1
num_obs <- 5000
rho <- 0.5
observations_mat <- mvtnorm::rmvnorm(n=num_obs,mean=rep(0,2),
sigma = matrix(c(sig_x^2,rho*sig_x*sig_y,
rho*sig_x*sig_y,sig_y^2),
nrow=2,ncol=2, byrow = TRUE))
hermite_est <- hermite_estimator(est_type = "bivariate",
observations = observations_mat)
vals <- seq(-5,5,by=0.25)
x_grid <- as.matrix(expand.grid(X=vals, Y=vals))
pdf_est <- dens(hermite_est,x_grid, clipped = TRUE)
cdf_est <- cum_prob(hermite_est,x_grid,clipped = TRUE)
spear_est <- spearmans(hermite_est)
kendall_est <- kendall(hermite_est)
actual_pdf <-mvtnorm::dmvnorm(x_grid,mean=rep(0,2),
sigma = matrix(c(sig_x^2,rho*sig_x*sig_y,
rho*sig_x*sig_y,sig_y^2),
nrow=2,ncol=2, byrow = TRUE))
actual_cdf <- rep(NA,nrow(x_grid))
for (row_idx in seq_len(nrow(x_grid))) {
actual_cdf[row_idx] <- mvtnorm::pmvnorm(lower = c(-Inf,-Inf),
upper=as.numeric(x_grid[row_idx,]),
mean=rep(0,2), sigma =
matrix(c(sig_x^2, rho*sig_x*sig_y,
rho*sig_x*sig_y,sig_y^2), nrow=2,
ncol=2, byrow = TRUE))
}
actual_spearmans <- cor(observations_mat,method = "spearman")[1,2]
actual_kendall <- cor(observations_mat,method = "kendall")[1,2]
df_pdf_cdf <- data.frame(x_grid,pdf_est,cdf_est,actual_pdf,actual_cdf)
p1 <- ggplot(df_pdf_cdf) + geom_tile(aes(X, Y, fill= actual_pdf)) +
scale_fill_continuous_sequential(palette="Oslo",
breaks=seq(0,.2,by=.05),
limits=c(0,.2))
p2 <- ggplot(df_pdf_cdf) + geom_tile(aes(X, Y, fill= pdf_est)) +
scale_fill_continuous_sequential(palette="Oslo",
breaks=seq(0,.2,by=.05),
limits=c(0,.2))
pdf_diff <- ggplot(df_pdf_cdf) + geom_tile(aes(X, Y, fill
= pdf_est - actual_pdf)) +
scale_fill_continuous_sequential(palette="Oslo",
breaks=seq(-.04,.04,by=.04),
limits=c(-.04,.04))
(p1+ ggtitle("Actual PDF")+ theme(legend.title = element_blank()) + p2 +
ggtitle("Estimated PDF") +theme(legend.title = element_blank()) +
plot_layout(guides = 'collect')) / (pdf_diff +
ggtitle("Estimated PDF - Actual PDF") +
theme(legend.title = element_blank()))
</code></pre>
<p><img src="" alt="plot of chunk reproduce_bivar_fig" /></p>
<pre><code class="language-r">p1 <- ggplot(df_pdf_cdf) + geom_tile(aes(X, Y, fill= actual_cdf)) +
scale_fill_continuous_sequential(palette="Oslo",
breaks=seq(0,1,by=.2),
limits=c(0,1))
p2 <- ggplot(df_pdf_cdf) + geom_tile(aes(X, Y, fill= cdf_est)) +
scale_fill_continuous_sequential(palette="Oslo",
breaks=seq(0,1,by=.2),
limits=c(0,1))
cdf_diff <- ggplot(df_pdf_cdf) + geom_tile(aes(X, Y, fill
= cdf_est - actual_cdf)) +
scale_fill_continuous_sequential(palette="Oslo",
breaks=seq(-.02,.02,by=.02),
limits=c(-.02,.02))
(p1+ ggtitle("Actual CDF") + theme(legend.title = element_blank()) + p2 +
ggtitle("Estimated CDF") + theme(legend.title = element_blank())+
plot_layout(guides = 'collect')) / (cdf_diff +
ggtitle("Estimated CDF - Actual CDF") +
theme(legend.title = element_blank()))
</code></pre>
<p><img src="" alt="plot of chunk reproduce_bivar_fig" /></p>
<p>Reproduce actual and estimated Spearman and Kendall correlation coefficient
results for <strong>Table 3</strong> in the text.</p>
<p>Actual Spearmans</p>
<pre><code class="language-r">print(round(actual_spearmans,3))
</code></pre>
<pre><code>## [1] 0.479
</code></pre>
<p>Estimated Spearmans</p>
<pre><code class="language-r">print(round(spear_est,3))
</code></pre>
<pre><code>## [1] 0.475
</code></pre>
<p>Actual Kendall</p>
<pre><code class="language-r">print(round(actual_kendall,3))
</code></pre>
<pre><code>## [1] 0.331
</code></pre>
<p>Estimated Kendall</p>
<pre><code class="language-r">print(round(kendall_est,3))
</code></pre>
<pre><code>## [1] 0.33
</code></pre>
<p>Reproduce quantile estimate results on EUR/USD and GBP/USD as presented in
<strong>Table 4</strong> in the text.</p>
<pre><code class="language-r">spread_data <-
arrow::read_parquet("./eurusd_gbpusd_spread_2021_10.parquet")
percs <- c(0.01,0.1,0.25,0.5,0.75,0.9,0.99)
hermite_ests <- by(spread_data, list(spread_data$hr,spread_data$currency_pair),
function(x){hermite_estimator(observations = log(x$spread_bps+1e-8))})
quantiles_ests <- t(sapply(hermite_ests,FUN=function(x){exp(quant(x,percs))}))
eur_usd_merged <- merge_hermite(as.list(hermite_ests)[1:24])
gbp_usd_merged <- merge_hermite(as.list(hermite_ests)[25:48])
gbp_all_hours <- exp(quant(gbp_usd_merged,percs))
eur_all_hours <- exp(quant(eur_usd_merged,percs))
dim(gbp_all_hours) <- c(1,length(percs))
dim(eur_all_hours) <- c(1,length(percs))
result <- data.frame(currency_pair = rep(attr(hermite_ests,"dimnames")[[2]],
each=24), hour_utc = rep(attr(hermite_ests,"dimnames")[[1]],2),
quantiles_ests)
result <- rbind(result,
data.frame(currency_pair = "EUR/USD", hour_utc = "All", eur_all_hours))
result <- rbind(result,
data.frame(currency_pair = "GBP/USD", hour_utc = "All", gbp_all_hours))
colnames(result) <- c("currency_pair", "hour_utc", paste0("p_",percs*100,"%"))
print(result,digits=1)
</code></pre>
<pre><code>## currency_pair hour_utc p_1% p_10% p_25% p_50% p_75% p_90% p_99%
## 1 EUR/USD 0 0.2 0.3 0.3 0.4 0.4 0.5 0.7
## 2 EUR/USD 1 0.2 0.3 0.3 0.4 0.4 0.4 0.5
## 3 EUR/USD 2 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 4 EUR/USD 3 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 5 EUR/USD 4 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 6 EUR/USD 5 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 7 EUR/USD 6 0.2 0.3 0.3 0.4 0.4 0.4 0.5
## 8 EUR/USD 7 0.2 0.3 0.3 0.4 0.4 0.5 0.5
## 9 EUR/USD 8 0.2 0.3 0.3 0.4 0.4 0.4 0.5
## 10 EUR/USD 9 0.2 0.3 0.3 0.4 0.4 0.4 0.5
## 11 EUR/USD 10 0.1 0.2 0.3 0.4 0.4 0.5 0.6
## 12 EUR/USD 11 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 13 EUR/USD 12 0.2 0.3 0.3 0.3 0.4 0.4 0.5
## 14 EUR/USD 13 0.2 0.3 0.3 0.4 0.4 0.4 0.5
## 15 EUR/USD 14 0.2 0.3 0.3 0.4 0.4 0.5 0.5
## 16 EUR/USD 15 0.2 0.3 0.3 0.4 0.4 0.5 0.5
## 17 EUR/USD 16 0.2 0.3 0.3 0.4 0.4 0.5 0.5
## 18 EUR/USD 17 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 19 EUR/USD 18 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 20 EUR/USD 19 0.2 0.3 0.3 0.4 0.4 0.5 0.6
## 21 EUR/USD 20 0.3 0.3 0.4 0.5 0.7 0.8 1.0
## 22 EUR/USD 21 1.8 2.6 3.0 4.0 6.0 8.5 15.9
## 23 EUR/USD 22 0.4 0.5 0.6 0.7 0.7 0.9 1.2
## 24 EUR/USD 23 0.3 0.4 0.5 0.5 0.6 0.7 0.7
## 25 GBP/USD 0 0.4 0.5 0.6 0.7 0.9 1.0 1.2
## 26 GBP/USD 1 0.4 0.5 0.6 0.8 0.9 1.0 1.2
## 27 GBP/USD 2 0.4 0.5 0.5 0.7 0.9 1.0 1.2
## 28 GBP/USD 3 0.4 0.5 0.6 0.8 0.9 1.0 1.1
## 29 GBP/USD 4 0.4 0.5 0.6 0.7 0.9 1.0 1.1
## 30 GBP/USD 5 0.4 0.5 0.6 0.7 0.8 0.9 1.2
## 31 GBP/USD 6 0.4 0.5 0.6 0.7 0.8 0.8 1.0
## 32 GBP/USD 7 0.3 0.5 0.6 0.7 0.8 0.9 1.0
## 33 GBP/USD 8 0.3 0.4 0.5 0.6 0.7 0.8 1.0
## 34 GBP/USD 9 0.3 0.4 0.5 0.6 0.7 0.8 1.0
## 35 GBP/USD 10 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## 36 GBP/USD 11 0.4 0.5 0.6 0.7 0.7 0.8 0.9
## 37 GBP/USD 12 0.3 0.4 0.5 0.6 0.7 0.8 1.0
## 38 GBP/USD 13 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## 39 GBP/USD 14 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## 40 GBP/USD 15 0.3 0.4 0.5 0.6 0.7 0.7 0.9
## 41 GBP/USD 16 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## 42 GBP/USD 17 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## 43 GBP/USD 18 0.4 0.5 0.6 0.7 0.8 0.8 0.9
## 44 GBP/USD 19 0.3 0.5 0.6 0.7 0.8 0.8 1.0
## 45 GBP/USD 20 0.5 0.7 0.8 1.0 1.1 1.3 2.3
## 46 GBP/USD 21 2.1 2.5 3.3 5.0 8.9 12.0 24.7
## 47 GBP/USD 22 0.9 1.0 1.1 1.3 1.6 1.9 2.5
## 48 GBP/USD 23 0.7 0.8 0.9 1.0 1.2 1.4 1.6
## 49 EUR/USD All 0.2 0.3 0.3 0.4 0.5 0.6 6.4
## 50 GBP/USD All 0.4 0.5 0.6 0.7 0.9 1.1 9.0
</code></pre>
<p>Reproduce sequential quantile estimate results on EUR/USD and GBP/USD as
presented in <strong>Figure 6</strong> in the text along with sequential Spearman
and Kendall correlation estimates presented in <strong>Figure 7</strong> in the text.</p>
<pre><code class="language-r">eur_data <- spread_data[which(spread_data$currency_pair == "EUR/USD" &
spread_data$time_stamp >= as.POSIXct(as.Date("2021-10-07")) &
spread_data$time_stamp < as.POSIXct(as.Date("2021-10-08"))),]
gbp_data <-spread_data[which(spread_data$currency_pair == "GBP/USD" &
spread_data$time_stamp >= as.POSIXct(as.Date("2021-10-07")) &
spread_data$time_stamp < as.POSIXct(as.Date("2021-10-08"))),]
eur_data <- eur_data[order(eur_data$time_stamp),]
gbp_data <- gbp_data[order(gbp_data$time_stamp),]
h_est_eur <- hermite_estimator(exp_weight_lambda = 0.05)
h_est_gbp <- hermite_estimator(exp_weight_lambda = 0.05)
h_est_bivariate <- hermite_estimator(est_type = "bivariate",
exp_weight_lambda = 0.05)
output_eur <- rep(NA,nrow(eur_data))
output_gbp <- rep(NA,nrow(gbp_data))
output_spearman<- rep(NA,nrow(gbp_data))
output_kendall<- rep(NA,nrow(gbp_data))
for (idx in seq_len(nrow(eur_data))) {
current_obs_eur <- eur_data[idx,]$spread_bps
current_obs_gbp <- gbp_data[idx,]$spread_bps
h_est_eur <- update_sequential(h_est_eur,log(current_obs_eur+1e-8))
h_est_gbp <- update_sequential(h_est_gbp,log(current_obs_gbp +1e-8))
h_est_bivariate <- update_sequential(h_est_bivariate,
c(log(current_obs_eur+1e-8),log(current_obs_gbp+1e-8)))
output_eur[idx] <- exp(quant(h_est_eur,p=0.5))
output_gbp[idx] <- exp(quant(h_est_gbp,p=0.5))
output_spearman[idx] <- spearmans(h_est_bivariate)
output_kendall[idx] <- kendall(h_est_bivariate)
}
output_res_df_eur <- data.frame(time_stamp = eur_data$time_stamp,
median_spread = output_eur, currency_pair="EUR/USD")
output_res_df_gbp <- data.frame(time_stamp = gbp_data$time_stamp,
median_spread = output_gbp, currency_pair="GBP/USD")
output_res_df <- rbind(output_res_df_eur,output_res_df_gbp)
output_spearman_df <- data.frame(time_stamp = eur_data$time_stamp,
correlation=output_spearman, type="spearman" )
output_spearman_df <- output_spearman_df[seq(1,nrow(output_spearman_df),by=10),]
output_kendall_df <- data.frame(time_stamp = eur_data$time_stamp,
correlation=output_kendall , type="kendall" )
output_kendall_df <- output_kendall_df[seq(1,nrow(output_kendall_df),by=10),]
output_correl_df <- rbind(output_spearman_df, output_kendall_df)
output_correl_df <- output_correl_df[order(output_correl_df$time_stamp),]
output_res_df_plot <- output_res_df[seq(1,nrow(output_res_df),by=10),]
ggplot(output_res_df_plot,mapping=aes(x=time_stamp ,y=median_spread,color =
currency_pair)) + geom_line() + xlab("Timestamp") +
ylab("Median Spread (bps)")
</code></pre>
<pre><code>## Warning: Removed 1 row containing missing values (`geom_line()`).
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-7" /></p>
<pre><code class="language-r">ggplot(output_correl_df,mapping=aes(x=time_stamp, y=correlation,color=type)) +
geom_line() +geom_smooth() + xlab("Timestamp") + ylab("Correlation")
</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
</code></pre>
<pre><code>## Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).
</code></pre>
<pre><code>## Warning: Removed 2 rows containing missing values (`geom_line()`).
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-7" /></p>
<p>Benchmark hermiter vs tdigest (parallel computation enabled), updating
with 1e6 observations. Reproduces <strong>Figure 8</strong> in the text.</p>
<pre><code class="language-r">obs <- rnorm(1e6)
bench_res <- microbenchmark::microbenchmark(
t_digest = tdigest(obs),
hermite_N_10 = hermite_estimator(N = 10, observations = obs),
hermite_N_20 = hermite_estimator(N = 20, observations = obs),
hermite_N_30 = hermite_estimator(N = 30, observations = obs),
hermite_N_50 = hermite_estimator(N = 50, observations = obs),
times = 20
)
autoplot(bench_res, log = TRUE)
</code></pre>
<pre><code>## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
</code></pre>
<p><img src="" alt="plot of chunk benchmark_updating" /></p>
<pre><code class="language-r">print(bench_res)
</code></pre>
<pre><code>## Unit: milliseconds
## expr min lq mean median uq max neval
## t_digest 97.3098 98.14090 98.94098 98.70065 99.58645 101.8031 20
## hermite_N_10 23.8611 24.22610 26.47650 24.42310 24.81625 42.5259 20
## hermite_N_20 31.9809 32.46780 35.16618 32.67305 34.62435 48.2838 20
## hermite_N_30 40.0571 40.60320 41.12018 40.98390 41.57010 42.6173 20
## hermite_N_50 56.4826 57.23035 60.30319 57.39500 61.20965 74.3275 20
</code></pre>
<p>Benchmark hermiter vs tdigest (parallel computation disabled), updating
with 1e6 observations. Reproduces <strong>Figure 9</strong> in the text.</p>
<pre><code class="language-r">options(hermiter.parallel = FALSE)
bench_res <- microbenchmark::microbenchmark(
t_digest = tdigest(obs),
hermite_N_10 = hermite_estimator(N = 10, observations = obs),
hermite_N_20 = hermite_estimator(N = 20, observations = obs),
hermite_N_30 = hermite_estimator(N = 30, observations = obs),
hermite_N_50 = hermite_estimator(N = 50, observations = obs),
times = 20
)
autoplot(bench_res, log = TRUE)
</code></pre>
<pre><code>## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
</code></pre>
<p><img src="" alt="plot of chunk benchmark_updating_serial" /></p>
<pre><code class="language-r">print(bench_res)
</code></pre>
<pre><code>## Unit: milliseconds
## expr min lq mean median uq max neval
## t_digest 96.4097 96.94005 97.07654 97.1558 97.2563 97.8746 20
## hermite_N_10 127.5902 129.94110 162.93353 134.5115 153.5274 381.7957 20
## hermite_N_20 254.6851 263.29775 273.58323 276.9704 283.4670 292.7922 20
## hermite_N_30 339.0049 350.70885 382.53319 363.1500 373.3352 604.3701 20
## hermite_N_50 581.8368 594.12540 620.07919 597.4981 602.7125 837.2012 20
</code></pre>
<pre><code class="language-r">options(hermiter.parallel = TRUE)
</code></pre>
<p>Benchmark hermiter vs tdigest, quantile estimation. Reproduces <strong>Figure 10</strong>
in the text.</p>
<pre><code class="language-r">obs <- rnorm(1e6)
td <- tdigest(obs)
h_est <-
hermite_estimator(observations = obs)
p_1 <- 0.5
p_100 <- seq(0.01, 1, 0.01)
p_10000 <- seq(0.0001, 1, 0.0001)
p_100000 <- seq(0.00001, 1, 0.00001)
bench_res <- microbenchmark::microbenchmark(
hermite_1_quantile = quant(h_est, p = p_1),
tdigest_1_quantile = quantile(td, probs = p_1),
hermite_100_quantiles = quant(h_est, p = p_100),
tdigest_100_quantiles = quantile(td, probs = p_100),
hermite_10_000_quantiles = quant(h_est, p = p_10000),
tdigest_10_000_quantiles = quantile(td, probs = p_10000),
hermite_100_000_quantiles = quant(h_est, p = p_100000),
tdigest_100_000_quantiles = quantile(td, probs = p_100000),
times = 1e2
)
autoplot(bench_res,
log = T,
xlab = "Algorithm",
ylab = "Time (millis)")
</code></pre>
<pre><code>## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
</code></pre>
<p><img src="" alt="plot of chunk benchmark_quantile_est" /></p>
<pre><code class="language-r">print(bench_res)
</code></pre>
<pre><code>## Unit: microseconds
## expr min lq mean median uq max neval
## hermite_1_quantile 258.2 348.05 421.941 406.80 454.45 1064.2 100
## tdigest_1_quantile 10.2 12.55 23.833 20.65 32.85 56.4 100
## hermite_100_quantiles 265.9 353.25 786.992 408.50 464.40 35910.4 100
## tdigest_100_quantiles 13.1 15.95 28.017 21.55 37.55 109.1 100
## hermite_10_000_quantiles 502.5 595.55 674.612 672.15 728.15 1397.5 100
## tdigest_10_000_quantiles 240.8 257.75 291.264 273.40 300.60 817.8 100
## hermite_100_000_quantiles 2421.3 2965.50 3056.162 3064.70 3241.50 5493.4 100
## tdigest_100_000_quantiles 2325.9 2428.70 2484.415 2484.75 2521.80 2928.9 100
</code></pre>
<p>Univariate simulation study comparing hermiter and tdigest for quantile
estimation.</p>
<pre><code class="language-r">calculate_miae_per_distro <- function(full_miae = FALSE) {
distros_index <- c(1:5, 7:8, 11, 13:17, 21:28)
numruns <- total_number_of_runs
num_obs_vec <- c(1e4, 1e5, 1e6, 1e7)
if (full_miae == TRUE) {
p <- randtoolbox::sobol(1000)
norm_factor <- 1
} else {
p <- randtoolbox::sobol(1000) * 0.98 + 0.01
norm_factor <- 0.98
}
distr_name_all <- c()
num_obs_all <- c()
mae_hermite_quant <- c()
mae_t_digest_quant <- c()
count <- 0
for (num_obs in num_obs_vec) {
for (current_distro_idx in seq_along(distros_index)) {
dnum <- distros_index[current_distro_idx]
distr_name <- benchden::berdev(dnum)$name
r_func <-
function(core_obs) {
benchden::rberdev(n = core_obs, dnum = dnum)
}
q_func <-
function(p_est) {
benchden::qberdev(p_est, dnum = dnum)
}
p_func <- function(x) {
benchden::pberdev(x, dnum = dnum)
}
res_hermite_quant <- rep(0, numruns)
res_t_digest_quant <- rep(0, numruns)
for (run in c(1:numruns)) {
obs <- r_func(num_obs)
h_est <- hermite_estimator(observations = obs )
td <- tdigest(obs)
q_est_hermite <- h_est %>% quant(p)
q_est_t_digest <- quantile(td, probs = p)
true_quant <- q_func(p)
res_hermite_quant[run] <- norm_factor *
mean(abs(q_est_hermite - true_quant))
res_t_digest_quant[run] <- norm_factor *
mean(abs(q_est_t_digest - true_quant))
}
mae_herm_quant <- mean(res_hermite_quant)
mae_t_dig_quant <- mean(res_t_digest_quant)
count <- count + 1
distr_name_all[count] <- distr_name
num_obs_all[count] <- num_obs
mae_hermite_quant[count] <- mae_herm_quant
mae_t_digest_quant[count] <- mae_t_dig_quant
}
}
result <- data.frame(
distribution_name = distr_name_all,
num_obs =
num_obs_all,
mae_hermite_quant,
mae_t_digest_quant
)
result <- result %>% mutate(hermite_better_quant =
ifelse(mae_hermite_quant < mae_t_digest_quant,
1, 0))
return(result)
}
</code></pre>
<pre><code class="language-r">calculate_miae <- function(miae_per_distro) {
univariate_quantile_results <- miae_per_distro %>%
group_by(num_obs) %>%
summarise(
num_herm_better = sum(hermite_better_quant),
total_distros = n(),
perc_herm_better =
sum(hermite_better_quant) / n()
)
return(univariate_quantile_results)
}
univar_quant_results_partial_per_distro <-
calculate_miae_per_distro(full_miae = FALSE)
univar_quant_results_full_per_distro <-
calculate_miae_per_distro(full_miae = TRUE)
univar_quant_results_partial <-
calculate_miae(univar_quant_results_partial_per_distro)
univar_quant_results_full <-
calculate_miae(univar_quant_results_full_per_distro)
</code></pre>
<p>Reproduces <strong>Table 5</strong> in the text:</p>
<pre><code class="language-r">print(univar_quant_results_full)
</code></pre>
<pre><code>## # A tibble: 4 × 4
## num_obs num_herm_better total_distros perc_herm_better
## <dbl> <dbl> <int> <dbl>
## 1 10000 12 21 0.571
## 2 100000 16 21 0.762
## 3 1000000 18 21 0.857
## 4 10000000 18 21 0.857
</code></pre>
<p>Reproduces <strong>Table 6</strong> in the text:</p>
<pre><code class="language-r">print(univar_quant_results_partial)
</code></pre>
<pre><code>## # A tibble: 4 × 4
## num_obs num_herm_better total_distros perc_herm_better
## <dbl> <dbl> <int> <dbl>
## 1 10000 15 21 0.714
## 2 100000 18 21 0.857
## 3 1000000 18 21 0.857
## 4 10000000 19 21 0.905
</code></pre>
<p>R implementation of count matrix algorithm of Xiao, Wei. “Novel online
algorithms for nonparametric correlations with application to analyze sensor
data.” 2019 IEEE International Conference on Big Data (Big Data). IEEE,
as an S3 class. The implementation below follows
<a href="https://github.com/wxiao0421/onlineNPCORR/">https://github.com/wxiao0421/onlineNPCORR/</a> reasonably closely in parts.</p>
<pre><code class="language-r">count_matrix_calculator <-
function(cut_points_inpt, normalize = FALSE) {
this <- list(
cut_points = cut_points_inpt,
count_matrix = matrix(
rep(0, cut_points_inpt ^ 2),
nrow = cut_points_inpt,
ncol = cut_points_inpt,
byrow = TRUE
),
n_row = rep(0, cut_points_inpt),
n_col = rep(0, cut_points_inpt),
x_breaks = qnorm(p = seq(0, 1, length.out =
(
cut_points_inpt + 1
)))[2:(cut_points_inpt)],
y_breaks = qnorm(p = seq(0, 1, length.out =
(
cut_points_inpt + 1
)))[2:(cut_points_inpt)],
num_obs = 0,
normalize_obs = normalize,
running_mean_x = 0,
running_mean_y = 0,
running_variation_x = 0,
running_variation_y = 0
)
class(this) <- append(class(this), "count_matrix_calculator")
return(this)
}
get_idx <- function(x, breaks) {
if (breaks[length(breaks)] < x) {
return(length(breaks) + 1)
}
return(which(breaks >= x)[1])
}
update_matrix <- function(this, x) {
UseMethod("update_matrix", this)
}
update_matrix.count_matrix_calculator <- function(this, x) {
this$num_obs <- this$num_obs + 1
if (this$normalize_obs == TRUE) {
prev_mean <- c(this$running_mean_x, this$running_mean_y)
upd_mean <- (prev_mean * (this$num_obs - 1) + x) / this$num_obs
this$running_mean_x <- upd_mean[1]
this$running_mean_y <- upd_mean[2]
if (this$num_obs < 2) {
return(this)
}
upd_var <- c(this$running_variation_x,
this$running_variation_y) + (x - prev_mean) *
(x - upd_mean)
this$running_variation_x <- upd_var[1]
this$running_variation_y <- upd_var[2]
x <- (x - upd_mean) / sqrt(upd_var / (this$num_obs))
}
idx_row <- get_idx(x[1], this$x_breaks)
idx_col <- get_idx(x[2], this$y_breaks)
this$count_matrix[idx_row, idx_col] <-
this$count_matrix[idx_row, idx_col] + 1
this$n_row[idx_row] <- this$n_row[idx_row] + 1
this$n_col[idx_col] <- this$n_col[idx_col] + 1
return(this)
}
get_spearmans <- function(this) {
UseMethod("get_spearmans", this)
}
get_spearmans.count_matrix_calculator <- function(this) {
len_x_breaks <- length(this$x_breaks)
len_y_breaks <- length(this$y_breaks)
r_row <- rep(0, len_x_breaks + 1)
r <- 0
for (k in c(1:(len_x_breaks + 1))) {
if (this$n_row[k] == 0) {
r_row[k] <- r
} else {
r_row[k] <- ((r + 1) + (r + this$n_row[k])) / 2
r <- r + this$n_row[k]
}
}
r_col <- rep(0, len_y_breaks + 1)
r <- 0
for (k in c(1:(len_y_breaks + 1))) {
if (this$n_col[k] == 0) {
r_col[k] <- r
} else {
r_col[k] <- ((r + 1) + (r + this$n_col[k])) / 2
r <- r + this$n_col[k]
}
}
r_row <- r_row - (this$num_obs + 1) / 2
r_col <- r_col - (this$num_obs + 1) / 2
r_row <- r_row / sqrt(sum(this$n_row * r_row ^ 2))
r_col <- r_col / sqrt(sum(this$n_col * r_col ^ 2))
corr <- t(r_row) %*% this$count_matrix %*% r_col
return(corr)
}
get_kendall <- function(this) {
UseMethod("get_kendall", this)
}
get_kendall.count_matrix_calculator <- function(this) {
len_n_row <- length(this$n_row)
len_n_col <- length(this$n_col)
count_mat_sum <-
matrix(rep(0, len_n_row * len_n_col), len_n_row, len_n_col, byrow = TRUE)
for (i in 2:len_n_row) {
count_mat_sum[i, 2:len_n_col] <-
cumsum(this$count_matrix[(i - 1), 1:(len_n_col - 1)])
}
for (i in 2:len_n_row) {
count_mat_sum[i, ] <- count_mat_sum[i, ] + count_mat_sum[(i - 1), ]
}
concord_pairs <- sum(this$count_matrix * count_mat_sum)
ties_in_x <- 0
for (i in 1:len_n_row) {
ties_in_x <- ties_in_x + (this$n_row[i] ^ 2 -
sum(this$count_matrix[i, ] ^ 2)) / 2
}
ties_in_y <- 0
for (j in 1:len_n_col) {
ties_in_y <- ties_in_y + (this$n_col[j] ^ 2 -
sum(this$count_matrix[, j] ^ 2)) / 2
}
ties_in_x_and_y <- sum(this$count_matrix * (this$count_matrix - 1)) / 2
discord_pairs <- this$num_obs * (this$num_obs - 1) / 2 - concord_pairs -
ties_in_x - ties_in_y - ties_in_x_and_y
corr <- (concord_pairs - discord_pairs) /
sqrt((concord_pairs + discord_pairs + ties_in_x) *
(concord_pairs + discord_pairs + ties_in_y))
return(corr)
}
</code></pre>
<p>Bivariate simulation study comparing hermiter and count matrix
algorithms for estimation of Spearman’s Rho and Kendall Tau coefficients.</p>
<pre><code class="language-r">rho_inpt <- c(-0.75, -0.5, -0.25, 0.25, 0.5, 0.75)
num_obs_inpt <- c(1e4, 5e4, 1e5)
runs <- total_number_of_runs
mae_matrix_kendall <- c()
mae_hermite_kendall <- c()
mae_matrix_spear <- c()
mae_hermite_spear <- c()
rho_vec <- c()
num_obs_vec <- c()
sig_x <- 1
sig_y <- 1
for (num_obs in num_obs_inpt) {
for (rho in rho_inpt) {
for (j in 1:runs) {
obs_mat <- mvtnorm::rmvnorm(
n = num_obs,
mean = rep(0, 2),
sigma = matrix(
c(sig_x ^ 2, rho * sig_x * sig_y,
rho * sig_x * sig_y, sig_y ^ 2),
nrow = 2,
ncol = 2,
byrow = T
)
)
matrix_est_c30 <-
count_matrix_calculator(cut_points_inpt = 30,
normalize = F)
matrix_est_c100 <-
count_matrix_calculator(cut_points_inpt = 100,
normalize = F)
hermite_est <-
hermite_estimator(est_type = "bivariate", standardize = F)
for (i in seq_len(nrow(obs_mat))) {
matrix_est_c100 <- matrix_est_c100 %>% update_matrix(obs_mat[i, ])
matrix_est_c30 <-
matrix_est_c30 %>% update_matrix(obs_mat[i, ])
hermite_est <-
hermite_est %>% update_sequential(obs_mat[i, ])
}
kendall_est_matrix <-
matrix_est_c100 %>% get_kendall()
kendall_est_hermite <- hermite_est %>% kendall()
spear_est_matrix <-
matrix_est_c30 %>% get_spearmans()
spear_est_hermite <- hermite_est %>% spearmans()
kendall_true <- 2 / pi * asin(rho)
spear_true <- cor(obs_mat, method = "spearman")[1, 2]
mae_matrix_kendall <- append(mae_matrix_kendall,
abs(kendall_est_matrix - kendall_true))
mae_hermite_kendall <- append(mae_hermite_kendall,
abs(kendall_est_hermite - kendall_true))
mae_matrix_spear <- append(mae_matrix_spear,
abs(spear_est_matrix - spear_true))
mae_hermite_spear <- append(mae_hermite_spear,
abs(spear_est_hermite - spear_true))
num_obs_vec <- append(num_obs_vec, num_obs)
rho_vec <- append(rho_vec, rho)
}
}
}
result <-
data.frame(
num_obs_vec,
rho_vec,
mae_matrix_kendall,
mae_hermite_kendall,
mae_matrix_spear,
mae_hermite_spear
)
summary_by_rho_and_num_obs <-
result %>%
group_by(num_obs_vec, rho_vec) %>%
summarise(
mae_matrix_kendall = mean(mae_matrix_kendall),
mae_hermite_kendall =
mean(mae_hermite_kendall),
mae_matrix_spear = mean(mae_matrix_spear),
mae_hermite_spear = mean(mae_hermite_spear)
)
summary_num_obs_kendall <- summary_by_rho_and_num_obs %>%
group_by(num_obs_vec) %>%
summarise(
mae_matrix_kendall_avg =
mean(mae_matrix_kendall) * 100,
mae_hermite_kendall_avg =
mean(mae_hermite_kendall) * 100,
sd_matrix_kendall =
sd(mae_matrix_kendall) * 100,
sd_hermite_kendall = sd(mae_hermite_kendall) * 100
)
summary_num_obs_spear <- summary_by_rho_and_num_obs %>%
group_by(num_obs_vec) %>%
summarise(
mae_matrix_spear_avg =
mean(mae_matrix_spear) * 100,
mae_hermite_spear_avg = mean(mae_hermite_spear) * 100,
sd_matrix_spear = sd(mae_matrix_spear) * 100,
sd_hermite_spear =
sd(mae_hermite_spear) * 100
)
</code></pre>
<p>Reproduces <strong>Table 7</strong> in the text.</p>
<pre><code class="language-r">print(summary_num_obs_spear)
</code></pre>
<pre><code>## # A tibble: 3 × 5
## num_obs_vec mae_matrix_spear_avg mae_hermite_spear_avg sd_matrix_spear sd_hermite_spear
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 10000 0.0947 0.146 0.0288 0.0502
## 2 50000 0.0990 0.0577 0.0295 0.00937
## 3 100000 0.103 0.0550 0.0271 0.00847
</code></pre>
<p>Reproduces <strong>Table 8</strong> in the text.</p>
<pre><code class="language-r">print(summary_num_obs_kendall)
</code></pre>
<pre><code>## # A tibble: 3 × 5
## num_obs_vec mae_matrix_kendall_avg mae_hermite_kendall_avg sd_matrix_kendall sd_hermite_kendall
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 10000 0.566 0.653 0.140 0.163
## 2 50000 0.377 0.210 0.148 0.0486
## 3 100000 0.377 0.153 0.140 0.0565
</code></pre>
<p>Reproduces <strong>Figure 11</strong> in the text.</p>
<pre><code class="language-r">pivoted_summary <- summary_by_rho_and_num_obs %>%
tidyr::pivot_longer(cols=-c(num_obs_vec,rho_vec)) %>%
tidyr::separate(col=name,sep = "_",into=
c("metric","method","correlation_type")) %>%
mutate(correlation_type=ifelse(correlation_type ==
"spear","Spearman","Kendall"))
ggplot(pivoted_summary,
aes(x=as.factor(num_obs_vec),y=value,fill=method)) +
geom_violin(position=position_dodge(.5)) +
stat_summary(fun=mean, geom="point", shape=23, size=2,
position = position_dodge(.5))+
scale_fill_brewer(palette="Blues") +
facet_wrap(~correlation_type,nrow=1) +
xlab("Number of Observations")+
ylab("Mean Absolute Error (MAE)")+ labs(fill = "Algorithm")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-12" /></p>
<p>Computational Details</p>
<pre><code class="language-r">sessionInfo()
</code></pre>
<pre><code>## R version 4.3.0 (2023-04-21 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
##