forked from mit-han-lab/torchquantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_vqe.py
154 lines (124 loc) · 4.2 KB
/
simple_vqe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torchquantum as tq
import torch
from torchquantum.vqe_utils import parse_hamiltonian_file
import random
import numpy as np
import argparse
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchquantum.measurement import expval_joint_analytical
class QVQEModel(tq.QuantumModule):
def __init__(self, arch, hamil_info):
super().__init__()
self.arch = arch
self.hamil_info = hamil_info
self.n_wires = hamil_info["n_wires"]
self.n_blocks = arch["n_blocks"]
self.u3_layers = tq.QuantumModuleList()
self.cu3_layers = tq.QuantumModuleList()
for _ in range(self.n_blocks):
self.u3_layers.append(
tq.Op1QAllLayer(
op=tq.U3,
n_wires=self.n_wires,
has_params=True,
trainable=True,
)
)
self.cu3_layers.append(
tq.Op2QAllLayer(
op=tq.CU3,
n_wires=self.n_wires,
has_params=True,
trainable=True,
circular=True,
)
)
def forward(self):
qdev = tq.QuantumDevice(
n_wires=self.n_wires, bsz=1, device=next(self.parameters()).device
)
for k in range(self.n_blocks):
self.u3_layers[k](qdev)
self.cu3_layers[k](qdev)
expval = 0
for hamil in self.hamil_info["hamil_list"]:
expval += (
expval_joint_analytical(qdev, observable=hamil["pauli_string"])
* hamil["coeff"]
)
return expval
def train(model, optimizer, n_steps=1):
for _ in range(n_steps):
loss = model()
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Expectation of energy: {loss.item()}")
def valid_test(model):
with torch.no_grad():
loss = model()
print(f"validation: expectation of energy: {loss.item()}")
def process_hamil_info(hamil_info):
hamil_list = hamil_info["hamil_list"]
n_wires = hamil_info["n_wires"]
all_info = []
for hamil in hamil_list:
pauli_string = ""
for i in range(n_wires):
if i in hamil["wires"]:
wire = hamil["wires"].index(i)
pauli_string += hamil["observables"][wire].upper()
else:
pauli_string += "I"
all_info.append({"pauli_string": pauli_string, "coeff": hamil["coefficient"]})
hamil_info["hamil_list"] = all_info
return hamil_info
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--pdb", action="store_true", help="debug with pdb")
parser.add_argument(
"--n_blocks",
type=int,
default=2,
help="number of blocks, each contain one layer of "
"U3 gates and one layer of CU3 with "
"ring connections",
)
parser.add_argument(
"--steps_per_epoch", type=int, default=10, help="number of training epochs"
)
parser.add_argument(
"--epochs", type=int, default=100, help="number of training epochs"
)
parser.add_argument(
"--hamil_filename",
type=str,
default="./h2.txt",
help="number of training epochs",
)
args = parser.parse_args()
if args.pdb:
import pdb
pdb.set_trace()
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
hamil_info = process_hamil_info(parse_hamiltonian_file(args.hamil_filename))
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
model = QVQEModel(arch={"n_blocks": args.n_blocks}, hamil_info=hamil_info)
model.to(device)
n_epochs = args.epochs
optimizer = optim.Adam(model.parameters(), lr=5e-3, weight_decay=1e-4)
scheduler = CosineAnnealingLR(optimizer, T_max=n_epochs)
for epoch in range(1, n_epochs + 1):
# train
print(f"Epoch {epoch}, LR: {optimizer.param_groups[0]['lr']}")
train(model, optimizer, n_steps=args.steps_per_epoch)
scheduler.step()
# final valid
valid_test(model)
if __name__ == "__main__":
main()