-
Notifications
You must be signed in to change notification settings - Fork 84
/
eval.py
755 lines (595 loc) · 22.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
'''
Created on Sep 3, 2017
@author: Michal.Busta at gmail.com
'''
import os, sys
sys.path.append('./build')
import numpy as np
import torch
import cv2
import net_utils
import argparse
import math
from data_gen import draw_box_points
from models import ModelMLTRCTW
from ocr_utils import print_seq_ext
from demo import resize_image
from nms import get_boxes
import torch.nn.functional as F
import csv
import unicodedata as ud
import editdistance
f = open('codec_rctw.txt', 'r')
codec = f.readlines()[0]
f.close()
print(len(codec))
maping_lang = {}
maping_lang[''] = 'Symbols'
maping_lang['LATIN'] = 'Latin'
maping_lang['DIGIT'] = 'Latin'
maping_lang['ARABIC'] = 'Arabic'
maping_lang['BENGALI'] = 'Bangla'
maping_lang['HANGUL'] = 'Korean'
maping_lang['CJK'] = 'Chinese'
maping_lang['HIRAGANA'] = 'Japanese'
maping_lang['KATAKANA'] = 'Japanese'
scripts = ['', 'DIGIT', 'LATIN', 'ARABIC', 'BENGALI', 'HANGUL', 'CJK', 'HIRAGANA', 'KATAKANA']
eval_text_length = 3
def load_detections(p):
'''
load annotation from the text file
:param p:
:return:
'''
text_polys = []
if not os.path.exists(p):
return np.array(text_polys, dtype=np.float32)
with open(p, 'r') as f:
reader = csv.reader(f, delimiter=',', quotechar='"')
for line in reader:
# strip BOM. \ufeff for python3, \xef\xbb\bf for python2
line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]
x2, y2, x3, y3, x4, y4, x1, y1, conf = list(map(float, line[:9]))
# cls = 0
text_polys.append([x1, y1, x2, y2, x3, y3, x4, y4, conf])
return np.array(text_polys, dtype=np.float)
def load_gt(p, is_icdar=False):
'''
load annotation from the text file,
:param p:
:return:
'''
text_polys = []
text_gts = []
if not os.path.exists(p):
return np.array(text_polys, dtype=np.float32), text_gts
with open(p, 'r') as f:
reader = csv.reader(f, delimiter=',', quotechar='"')
for line in reader:
# strip BOM. \ufeff for python3, \xef\xbb\bf for python2
line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]
x1, y1, x2, y2, x3, y3, x4, y4 = list(map(float, line[:8]))
# cls = 0
gt_txt = ''
delim = ''
start_idx = 9
if is_icdar:
start_idx = 8
for idx in range(start_idx, len(line)):
gt_txt += delim + line[idx]
delim = ','
text_polys.append([x4, y4, x1, y1, x2, y2, x3, y3])
text_line = gt_txt.strip()
text_gts.append(text_line)
return np.array(text_polys, dtype=np.float), text_gts
def draw_detections(img, boxes, color=(255, 0, 0)):
draw2 = np.copy(img)
if len(boxes) == 0:
return draw2
for i in range(0, boxes.shape[0]):
pts = boxes[i]
pts = pts[0:8]
pts = pts.reshape(4, -1)
pts = np.asarray(pts, dtype=np.int)
draw_box_points(draw2, pts, color=color, thickness=2)
# cv2.imshow('nms', draw2)
return draw2
def intersect(a, b):
'''Determine the intersection of two rectangles'''
rect = (0, 0, 0, 0)
r0 = max(a[0], b[0])
c0 = max(a[1], b[1])
r1 = min(a[2], b[2])
c1 = min(a[3], b[3])
# Do we have a valid intersection?
if r1 > r0 and c1 > c0:
rect = (r0, c0, r1, c1)
return rect
def union(a, b):
r0 = min(a[0], b[0])
c0 = min(a[1], b[1])
r1 = max(a[2], b[2])
c1 = max(a[3], b[3])
return (r0, c0, r1, c1)
def area(a):
'''Computes rectangle area'''
width = a[2] - a[0]
height = a[3] - a[1]
return abs(width * height)
def evaluate_image(img, detections, gt_rect, gt_txts, iou_th=0.5, iou_th_vis=0.5, iou_th_eval=0.5, eval_text_length=3):
'''
Summary : Returns end-to-end true-positives, detection true-positives, number of GT to be considered for eval (len > 2).
Description : For each predicted bounding-box, comparision is made with each GT entry. Values of number of end-to-end true
positives, number of detection true positives, number of GT entries to be considered for evaluation are computed.
Parameters
----------
iou_th_eval : float
Threshold value of intersection-over-union used for evaluation of predicted bounding-boxes
iou_th_vis : float
Threshold value of intersection-over-union used for visualization when transciption is true but IoU is lesser.
iou_th : float
Threshold value of intersection-over-union between GT and prediction.
word_gto : list of lists
List of ground-truth bounding boxes along with transcription.
batch : list of lists
List containing data (input image, image file name, ground truth).
detections : tuple of tuples
Tuple of predicted bounding boxes along with transcriptions and text/no-text score.
Returns
-------
tp : int
Number of predicted bounding-boxes having IoU with GT greater than iou_th_eval.
tp_e2e : int
Number of predicted bounding-boxes having same transciption as GT and len > 2.
gt_e2e : int
Number of GT entries for which transcription len > 2.
'''
gt_to_detection = {}
detection_to_gt = {}
tp = 0
tp_e2e = 0
tp_e2e_ed1 = 0
gt_e2e = 0
gt_matches = np.zeros(gt_rect.shape[0])
gt_matches_ed1 = np.zeros(gt_rect.shape[0])
for i in range(0, len(detections)):
det = detections[i]
box = det[0] # Predicted bounding-box parameters
box = np.array(box, dtype="int") # Convert predicted bounding-box to numpy array
box = box[0:8].reshape(4, 2)
bbox = cv2.boundingRect(box)
bbox = [bbox[0], bbox[1], bbox[2], bbox[3]]
bbox[2] += bbox[0] # Convert width to right-coordinate
bbox[3] += bbox[1] # Convert height to bottom-coordinate
det_text = det[1] # Predicted transcription for bounding-box
for gt_no in range(len(gt_rect)):
gtbox = gt_rect[gt_no]
txt = gt_txts[gt_no] # GT transcription for given GT bounding-box
gtbox = np.array(gtbox, dtype="int")
gtbox = gtbox[0:8].reshape(4, 2)
rect_gt = cv2.boundingRect(gtbox)
rect_gt = [rect_gt[0], rect_gt[1], rect_gt[2], rect_gt[3]]
rect_gt[2] += rect_gt[0] # Convert GT width to right-coordinate
rect_gt[3] += rect_gt[1] # Convert GT height to bottom-coordinate
inter = intersect(bbox, rect_gt) # Intersection of predicted and GT bounding-boxes
uni = union(bbox, rect_gt) # Union of predicted and GT bounding-boxes
ratio = area(inter) / float(area(uni)) # IoU measure between predicted and GT bounding-boxes
# 1). Visualize the predicted-bounding box if IoU with GT is higher than IoU threshold (iou_th) (Always required)
# 2). Visualize the predicted-bounding box if transcription matches the GT and condition 1. holds
# 3). Visualize the predicted-bounding box if transcription matches and IoU with GT is less than iou_th_vis and 1. and 2. hold
if ratio > iou_th:
if not gt_no in gt_to_detection:
gt_to_detection[gt_no] = [0, 0]
edit_dist = editdistance.eval(det_text.lower(), txt.lower())
if edit_dist <= 1:
gt_matches_ed1[gt_no] = 1
draw_box_points(img, box, color=(0, 128, 0), thickness=2)
if edit_dist == 0: # det_text.lower().find(txt.lower()) != -1:
draw_box_points(img, box, color=(0, 255, 0), thickness=2)
gt_matches[gt_no] = 1 # Change this parameter to 1 when predicted transcription is correct.
if ratio < iou_th_vis:
# draw_box_points(draw, box, color = (255, 255, 255), thickness=2)
# cv2.imshow('draw', draw)
# cv2.waitKey(0)
pass
tupl = gt_to_detection[gt_no]
if tupl[0] < ratio:
tupl[0] = ratio
tupl[1] = i
detection_to_gt[i] = [gt_no, ratio, edit_dist]
# Count the number of end-to-end and detection true-positives
for gt_no in range(gt_matches.shape[0]):
gt = gt_matches[gt_no]
gt_ed1 = gt_matches_ed1[gt_no]
txt = gt_txts[gt_no]
gtbox = gt_rect[gt_no]
gtbox = np.array(gtbox, dtype="int")
gtbox = gtbox[0:8].reshape(4, 2)
if len(txt) >= eval_text_length and not txt.startswith('##'):
gt_e2e += 1
if gt == 1:
tp_e2e += 1
if gt_ed1 == 1:
tp_e2e_ed1 += 1
if gt_no in gt_to_detection:
tupl = gt_to_detection[gt_no]
if tupl[0] > iou_th_eval: # Increment detection true-positive, if IoU is greater than iou_th_eval
if len(txt) >= eval_text_length and not txt.startswith('##'):
tp += 1
# else:
# draw_box_points(img, gtbox, color = (255, 255, 255), thickness=2)
for i in range(0, len(detections)):
det = detections[i]
box = det[0] # Predicted bounding-box parameters
box = np.array(box, dtype="int") # Convert predicted bounding-box to numpy array
box = box[0:8].reshape(4, 2)
if not i in detection_to_gt:
draw_box_points(img, box, color=(0, 0, 255), thickness=2)
else:
[gt_no, ratio, edit_dist] = detection_to_gt[i]
if edit_dist > 0:
draw_box_points(img, box, color=(255, 0, 0), thickness=2)
# cv2.imshow('draw', draw)
return tp, tp_e2e, gt_e2e, tp_e2e_ed1, detection_to_gt
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
import glob
def process_splits(trans, word_splits, conf, splits, start, ctc_f, rot_mat, angle, box_points, w, h, draw, is_dict, debug=False):
'''
Summary : Split the transciption and corresponding bounding-box based on spaces predicted by recognizer FCN.
Description :
Parameters
----------
trans : string
String containing the predicted transcription for the corresponding predicted bounding-box.
conf : list
List containing sum of confidence for all the character by recognizer FCN, start and end position in bounding-box for generated transciption.
splits : list
List containing index of position of predicted spaces by the recognizer FCN.
norm2 : matrix
Matrix containing the cropped bounding-box predicted by localization FCN in the originial image.
ctc_f : matrix
Matrix containing output of recognizer FCN for the given input bounding-box.
rot_mat : matrix
Rotation matrix returned by get_normalized_image function.
boxt : tuple of tuples
Tuple of tuples containing parametes of predicted bounding-box by localization FCN.
draw : matrix
Matrix containing input image.
is_dict :
debug : boolean
Boolean parameter representing debug mode, if it is True visualization boxes are generated.
Returns
-------
boxes_out : list of tuples
List of tuples containing predicted bounding-box parameters, predicted transcription and mean confidence score from the recognizer.
'''
spl = word_splits
boxout = np.copy(box_points)
# draw_box_points(draw, boxout, color = (0, 255, 0), thickness=2)
start_f = start[0, 0]
mean_conf = conf[0, 0] / max(1, len(trans)) # Overall confidence of recognizer FCN
boxes_out = []
y = 0
for s in range(len(spl)):
text = spl[s]
end_f = splits[0, s]
if s < len(spl) - 1:
try:
if splits[0, s] > start_f:
end_f = splits[0, s] # New ending point of bounding-box transcription
except IndexError:
pass
scalex = w / float(ctc_f.shape[1])
poss = start_f * scalex
pose = (end_f + 2) * scalex
rect = [[poss, h], [poss, y], [pose, y], [pose, h]]
rect = np.array(rect)
int_t = rot_mat
dst_rect = np.copy(rect)
dst_rect[:, 0] = int_t[0, 0] * rect[:, 0] + int_t[0, 1] * rect[:, 1] + int_t[0, 2]
dst_rect[:, 1] = int_t[1, 0] * rect[:, 0] + int_t[1, 1] * rect[:, 1] + int_t[1, 2]
dst_rect[:, 0] += boxout[1, 0]
dst_rect[:, 1] += boxout[1, 1]
if debug:
draw_box_points(draw, dst_rect, color=(0, 255, 0))
cv2.imshow('draw', draw)
cv2.waitKey(0)
boxes_out.append((dst_rect, [text, mean_conf, is_dict]))
start_f = end_f + 1
return boxes_out
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-cuda', type=int, default=1)
parser.add_argument('-model', default='e2e-mltrctw.h5')
parser.add_argument('-images_dir', default='/home/busta/data/ch8_validation_e2e')
parser.add_argument('-debug', type=int, default=0)
parser.add_argument('-segm_thresh', default=0.9)
parser.add_argument('-evaluate', type=int, default=1)
parser.add_argument('-out_dir', default='eval')
parser.add_argument('-eval_text_length', type=int, default=3)
args = parser.parse_args()
net = ModelMLTRCTW(attention=True)
model_name = 'SemanticTexte2e'
print("Using {0}".format(model_name))
net_utils.load_net(args.model, net)
net = net.eval()
if args.cuda:
print('Using cuda ...')
net = net.cuda()
images = glob.glob(os.path.join(args.images_dir, '*.jpg'))
png = glob.glob(os.path.join(args.images_dir, '*.png'))
images.extend(png)
png = glob.glob(os.path.join(args.images_dir, '*.JPG'))
images.extend(png)
# cmp_trie.load_dict('/home/busta/data/icdar2013-Test/GenericVocabulary.txt')
# cmp_trie.load_codec('codec.txt')
tp_all = 0
gt_all = 0
tp_e2e_all = 0
gt_e2e_all = 0
tp_e2e_ed1_all = 0
detecitons_all = 0
im_no = 0
min_height = 8
if not os.path.exists('eval'):
os.mkdir(args.out_dir)
if not os.path.exists('preview'):
os.mkdir('preview')
eval_text_length = args.eval_text_length
nums = []
image_no = 0
with torch.no_grad():
for img_name in sorted(images):
num = int(os.path.basename(img_name).replace('ts_', "").replace("img_", "").replace('.jpg', "").replace('.JPG', "").replace('.png', ""))
nums.append((num, img_name))
for tp in sorted(nums, key=lambda images: images[0]):
num = tp[0]
img_name = tp[1]
base_nam = os.path.basename(img_name)
if args.evaluate == 1:
res_gt = base_nam.replace(".jpg", '.txt').replace(".png", '.txt')
res_gt = '{0}/gt_{1}'.format(args.images_dir, res_gt)
if not os.path.exists(res_gt):
res_gt = base_nam.replace(".jpg", '.txt').replace("_", "")
res_gt = '{0}/gt_{1}'.format(args.images_dir, res_gt)
if not os.path.exists(res_gt):
print('missing! {0}'.format(res_gt))
gt_rect, gt_txts = [], []
# continue
gt_rect, gt_txts = load_gt(res_gt)
print(img_name)
img = cv2.imread(img_name)
# font = cv2.FONT_HERSHEY_SIMPLEX
# cv2.putText(img,'cs',(10,img.shape[0] -40), font, 0.8,(255,255,255),2,cv2.LINE_AA)
im_resized, (ratio_h, ratio_w) = resize_image(img, max_size=1848 * 1024, scale_up=True) # 1348*1024 #1848*1024
# im_resized = im_resized[:, :, ::-1]
images = np.asarray([im_resized], dtype=np.float)
images /= 128
images -= 1
im_data = net_utils.np_to_variable(images, is_cuda=args.cuda).permute(0, 3, 1, 2)
[iou_pred, iou_pred1], rboxs, angle_pred, features = net(im_data)
iou = iou_pred.data.cpu()[0].numpy()
iou = iou.squeeze(0)
iou_pred1 = iou_pred1.data.cpu()[0].numpy()
iou_pred1 = iou_pred1.squeeze(0)
# ioud = segm_predd.data.cpu()[0].numpy()
# ioud = ioud.squeeze(0)
rbox = rboxs[0].data.cpu()[0].numpy()
rbox = rbox.swapaxes(0, 1)
rbox = rbox.swapaxes(1, 2)
# rboxd = rboxd.data.cpu()[0].numpy()
# rboxd = rboxd.swapaxes(0, 1)
# rboxd = rboxd.swapaxes(1, 2)
# rboxd = rboxd
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
# iou = cv2.erode(iou, kernel,iterations = 1)
# iou = cv2.blur(iou, (3, 3))
if args.debug == 1:
cv2.imshow('iou', iou)
# cv2.imshow('ioud', ioud)
cv2.imshow('iou_pred1', iou_pred1)
size = 3
import scipy.ndimage as ndimage
image_max = ndimage.maximum_filter(iou, size=size, mode='constant')
mask = (iou == image_max)
iou2 = iou * mask
if args.debug == 1:
cv2.imshow('iou2', iou2)
detections = get_boxes(iou, rbox, angle_pred[0].data.cpu()[0].numpy(), args.segm_thresh)
# detectionsd = get_boxes(iou_pred1, rboxd, angle_pred[1].data.cpu()[0].numpy(), args.segm_thresh, iou_thresh=0.2)
im_scalex = im_resized.shape[1] / img.shape[1]
im_scaley = im_resized.shape[0] / img.shape[0]
detectionso = np.copy(detections)
if len(detections) > 0:
detections[:, 0] /= im_scalex
detections[:, 2] /= im_scalex
detections[:, 4] /= im_scalex
detections[:, 6] /= im_scalex
detections[:, 1] /= im_scaley
detections[:, 3] /= im_scaley
detections[:, 5] /= im_scaley
detections[:, 7] /= im_scaley
draw = np.copy(img)
detetcions_out = []
pil_img = Image.fromarray(draw)
pil_draw = ImageDraw.Draw(pil_img)
font = ImageFont.truetype("Arial-Unicode-Regular.ttf", 16)
box_no = 0
res_file = os.path.join(args.out_dir, 'res_img_{num:05d}.txt'.format(num=num))
res_file = open(res_file, 'w')
for bid, box in enumerate(detections):
boxo = detectionso[bid]
score = boxo[8]
boxr = boxo[0:8].reshape(-1, 2)
box_area = area(boxr.reshape(8))
conf_factor = score / box_area
# if conf_factor < 0.1:
# continue
boxr2 = box[0:8].reshape(-1, 2)
boxr2[boxr2 < 0] = 0
if boxr2[:, 0].max() > img.shape[1]:
continue
if boxr2[:, 1].max() > img.shape[0]:
continue
center = (boxr[0, :] + boxr[1, :] + boxr[2, :] + boxr[3, :]) / 4
dw = boxr[2, :] - boxr[1, :]
dw2 = boxr[0, :] - boxr[3, :]
dh = boxr[1, :] - boxr[0, :]
dh2 = boxr[3, :] - boxr[2, :]
h = math.sqrt(dh[0] * dh[0] + dh[1] * dh[1]) + 1
h2 = math.sqrt(dh2[0] * dh2[0] + dh2[1] * dh2[1]) + 1
h = (h + h2) / 2
w = math.sqrt(dw[0] * dw[0] + dw[1] * dw[1])
w2 = math.sqrt(dw2[0] * dw2[0] + dw2[1] * dw2[1])
w = (w + w2) / 2
if ((h - 1) / im_scaley) < min_height:
print('too small detection')
continue
input_W = im_data.size(3)
input_H = im_data.size(2)
target_h = 44
scale = target_h / h
target_gw = int(w * scale + target_h / 4)
target_gw = max(8, int(round(target_gw / 4)) * 4)
xc = center[0]
yc = center[1]
w2 = w
h2 = h
angle = math.atan2((boxr[2][1] - boxr[1][1]), boxr[2][0] - boxr[1][0])
angle2 = math.atan2((boxr[3][1] - boxr[0][1]), boxr[3][0] - boxr[0][0])
angle = (angle + angle2) / 2
# show pooled image in image layer
scalex = (w2 + h2 / 4) / input_W
scaley = h2 / input_H
th11 = scalex * math.cos(angle)
th12 = -math.sin(angle) * scaley * input_H / input_W
th13 = (2 * xc - input_W - 1) / (input_W - 1)
th21 = math.sin(angle) * scalex * input_W / input_H
th22 = scaley * math.cos(angle)
th23 = (2 * yc - input_H - 1) / (input_H - 1)
t = np.asarray([th11, th12, th13, th21, th22, th23], dtype=np.float)
t = torch.from_numpy(t).type(torch.FloatTensor)
t = t.cuda()
theta = t.view(-1, 2, 3)
grid = F.affine_grid(theta, torch.Size((1, 3, int(target_h), int(target_gw))))
x = F.grid_sample(im_data, grid)
h2 = 2 * h2
scalex = (w2 + int(2 * h2)) / input_W
scaley = h2 / input_H
th11 = scalex * math.cos(angle)
th12 = -math.sin(angle) * scaley
th13 = (2 * xc - input_W - 1) / (input_W - 1) # * torch.cos(angle_var) - (2 * yc - input_H - 1) / (input_H - 1) * torch.sin(angle_var)
th21 = math.sin(angle) * scalex
th22 = scaley * math.cos(angle)
th23 = (2 * yc - input_H - 1) / (input_H - 1) # * torch.cos(angle_var) + (2 * xc - input_W - 1) / (input_W - 1) * torch.sin(angle_var)
t = np.asarray([th11, th12, th13, th21, th22, th23], dtype=np.float)
t = torch.from_numpy(t).type(torch.FloatTensor)
t = t.cuda()
theta = t.view(-1, 2, 3)
grid2 = F.affine_grid(theta, torch.Size((1, 3, int(2 * target_h), int(target_gw + 2 * target_h))))
x2 = F.grid_sample(im_data, grid2)
im = x.data.cpu().numpy()
im = im.squeeze(0)
im = im.swapaxes(0, 2)
im = im.swapaxes(0, 1)
features = net.forward_features(x)
labels_pred = net.forward_ocr(features)
features2 = net.forward_features(x2)
offset = (features2.size(2) - features.size(2)) // 2
offset2 = (features2.size(3) - features.size(3)) // 2
features2 = features2[:, :, offset:(features.size(2) + offset), offset2:-offset2]
labels_pred2 = net.forward_ocr(features2)
ctc_f = labels_pred.data.cpu().numpy()
ctc_f = ctc_f.swapaxes(1, 2)
labels = ctc_f.argmax(2)
ind = np.unravel_index(labels, ctc_f.shape)
conf = np.mean(np.exp(ctc_f.max(2)[labels > 3]))
# if conf < 0.4:
# print('Too low conf!')
# continue
conf_raw = np.exp(ctc_f[ind])
det_text, conf2, dec_s, word_splits = print_seq_ext(labels[0, :], codec)
det_text = det_text.strip()
if args.debug:
im += 1
im *= 128
cv2.imshow('im', im.astype(np.uint8))
cv2.waitKey(0)
if args.debug:
print(det_text)
if conf < 0.01 and len(det_text) == 3:
print('Too low conf short: {0} {1}'.format(det_text, conf))
continue
try:
if len(det_text) > 0 and 'ARABIC' in ud.name(det_text[0]):
det_text = det_text[::-1]
except:
pass
has_long = False
if len(det_text) > 0:
rot_mat = cv2.getRotationMatrix2D((0, 0), -angle * 180 / math.pi, 1)
splits_raw = process_splits(det_text, word_splits, conf_raw, dec_s, conf2, ctc_f, rot_mat, angle, boxr, w, h, im_resized, 0) # Process the split and improve the localization
for spl in splits_raw:
spl[1][0] = spl[1][0].strip()
if len(spl[1][0]) >= eval_text_length:
has_long = True
boxw = spl[0]
boxw[:, 0] /= im_scalex
boxw[:, 1] /= im_scaley
draw_box_points(img, boxw, color=(0, 255, 0))
# cv2.imshow('img', img)
# cv2.waitKey()
# print('{0} - {1}'.format(spl[1][0], conf_factor))
# if conf_factor < 0.01:
# print('Skipping {0} - {1}'.format(spl[1][0], conf_factor))
# continue
print('{0} - {1}'.format(spl[1][0], conf_factor))
boxw = boxw.reshape(8)
detetcions_out.append([boxw, spl[1][0]])
res_file.write('{},{},{},{},{},{},{},{},1.0,{}\r\n'.format(int(boxw[2]), int(boxw[3]), int(boxw[4]), int(boxw[5]), int(boxw[6]), int(boxw[7]), int(boxw[0]), int(boxw[1]), spl[1][0]))
pix = img
if args.evaluate == 1:
tp, tp_e2e, gt_e2e, tp_e2e_ed1, detection_to_gt = evaluate_image(pix, detetcions_out, gt_rect, gt_txts, eval_text_length=eval_text_length)
tp_all += tp
gt_all += len(gt_txts)
tp_e2e_all += tp_e2e
gt_e2e_all += gt_e2e
tp_e2e_ed1_all += tp_e2e_ed1
detecitons_all += len(detetcions_out)
print(" E2E recall {0:.3f} / {1:.3f} / {2:.3f}, precision: {3:.3f}".format(
tp_e2e_all / float(max(1, gt_e2e_all)),
tp_all / float(max(1, gt_e2e_all)),
tp_e2e_ed1_all / float(max(1, gt_e2e_all)),
tp_all / float(max(1, detecitons_all))))
pil_img = Image.fromarray(pix)
pil_draw = ImageDraw.Draw(pil_img)
det_no = 0
for box, det_text in detetcions_out:
width, height = pil_draw.textsize(det_text, font=font)
box = box.reshape(8)
center = [box[2] + 3, box[3] - height - 2]
draw_text = det_text
try:
if len(det_text) > 0 and 'ARABIC' in ud.name(det_text[0]):
draw_text = det_text[::-1]
except:
pass
pil_draw.text((center[0], center[1]), draw_text, fill=(0, 255, 0), font=font)
if args.evaluate == 1 and det_no in detection_to_gt:
[gt_no, ratio, edit_dist] = detection_to_gt[det_no]
if edit_dist > 0:
center[0] += width + 5
gt_text = gt_txts[gt_no]
# pil_draw.text((center[0], center[1]), gt_text, fill = (255,0,0),font=font)
det_no += 1
pix = np.array(pil_img)
cv2.imwrite('preview/{0}'.format(base_nam), pix)
res_file.close()
# if im_no > 100:
# break
im_no += 1
if args.debug == 1:
cv2.imshow('pix', pix)
cv2.waitKey(0)