-
Notifications
You must be signed in to change notification settings - Fork 84
/
demo.py
130 lines (91 loc) · 3.14 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
'''
Created on Aug 25, 2017
@author: busta
'''
import cv2
import numpy as np
from nms import get_boxes
from models import ModelResNetSep2
import net_utils
from ocr_utils import ocr_image
from data_gen import draw_box_points
import torch
import argparse
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
f = open('codec.txt', 'r', encoding='utf-8')
codec = f.readlines()[0]
f.close()
def resize_image(im, max_size = 1585152, scale_up=True):
if scale_up:
image_size = [im.shape[1] * 3 // 32 * 32, im.shape[0] * 3 // 32 * 32]
else:
image_size = [im.shape[1] // 32 * 32, im.shape[0] // 32 * 32]
while image_size[0] * image_size[1] > max_size:
image_size[0] /= 1.2
image_size[1] /= 1.2
image_size[0] = int(image_size[0] // 32) * 32
image_size[1] = int(image_size[1] // 32) * 32
resize_h = int(image_size[1])
resize_w = int(image_size[0])
scaled = cv2.resize(im, dsize=(resize_w, resize_h))
return scaled, (resize_h, resize_w)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-cuda', type=int, default=1)
parser.add_argument('-model', default='e2e-mlt.h5')
parser.add_argument('-segm_thresh', default=0.5)
font2 = ImageFont.truetype("Arial-Unicode-Regular.ttf", 18)
args = parser.parse_args()
net = ModelResNetSep2(attention=True)
net_utils.load_net(args.model, net)
net = net.eval()
if args.cuda:
print('Using cuda ...')
net = net.cuda()
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_AUTOFOCUS, 1)
ret, im = cap.read()
frame_no = 0
with torch.no_grad():
while ret:
ret, im = cap.read()
if ret==True:
im_resized, (ratio_h, ratio_w) = resize_image(im, scale_up=False)
images = np.asarray([im_resized], dtype=np.float)
images /= 128
images -= 1
im_data = net_utils.np_to_variable(images, is_cuda=args.cuda).permute(0, 3, 1, 2)
seg_pred, rboxs, angle_pred, features = net(im_data)
rbox = rboxs[0].data.cpu()[0].numpy()
rbox = rbox.swapaxes(0, 1)
rbox = rbox.swapaxes(1, 2)
angle_pred = angle_pred[0].data.cpu()[0].numpy()
segm = seg_pred[0].data.cpu()[0].numpy()
segm = segm.squeeze(0)
draw2 = np.copy(im_resized)
boxes = get_boxes(segm, rbox, angle_pred, args.segm_thresh)
img = Image.fromarray(draw2)
draw = ImageDraw.Draw(img)
#if len(boxes) > 10:
# boxes = boxes[0:10]
out_boxes = []
for box in boxes:
pts = box[0:8]
pts = pts.reshape(4, -1)
det_text, conf, dec_s = ocr_image(net, codec, im_data, box)
if len(det_text) == 0:
continue
width, height = draw.textsize(det_text, font=font2)
center = [box[0], box[1]]
draw.text((center[0], center[1]), det_text, fill = (0,255,0),font=font2)
out_boxes.append(box)
print(det_text)
im = np.array(img)
for box in out_boxes:
pts = box[0:8]
pts = pts.reshape(4, -1)
draw_box_points(im, pts, color=(0, 255, 0), thickness=1)
cv2.imshow('img', im)
cv2.waitKey(10)