-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
62 lines (43 loc) · 1.66 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""Store models here"""
import torch
from torch import nn
class SmallValueNet(nn.Module):
def __init__(self):
super(SmallValueNet, self).__init__()
"""This could be a small backbone"""
self.conv1 = torch.nn.Conv2d(12, 32, 3)
self.relu1 = torch.nn.ReLU()
self.pool1 = torch.nn.MaxPool2d(2)
self.conv2 = torch.nn.Conv2d(32, 64, 2)
self.relu2 = torch.nn.ReLU()
self.pool2 = torch.nn.MaxPool2d(2)
self.flatten = torch.nn.Flatten()
"""maybe this could be where the network splits"""
self.dense1 = torch.nn.Linear(64, 128)
self.relu3 = torch.nn.ReLU()
self.value = torch.nn.Linear(128, 1)
def forward(self, state):
conv_1_out = self.conv1(state)
print("conv 1 out shape", conv_1_out.shape)
relu_1 = self.relu1(conv_1_out)
pool_1_out = self.pool1(relu_1)
print("pool_1_out shape", pool_1_out.shape)
conv_2_out = self.conv2(pool_1_out)
print("conv 2 out shape", conv_2_out.shape)
relu_2 = self.relu2(conv_2_out)
pool_2_out = self.pool2(relu_2)
print("pool_2_out shape", pool_2_out.shape)
flatten_out = self.flatten(pool_2_out)
print("flatten shape", flatten_out.shape)
dense1_out = self.dense1(flatten_out)
relu_3 = self.relu3(dense1_out)
return self.value(relu_3)
class LargeValueNet(nn.Module):
""" Res Network. """
pass
if __name__ == "__main__":
"""Sample test residual network"""
value_net = SmallValueNet()
sample_state = torch.ones((1, 12, 8, 8))
probaility_of_winning = value_net(sample_state)
print(probaility_of_winning)