-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
332 lines (269 loc) · 10.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
from flask import Flask, request, render_template, redirect, url_for, send_from_directory, session
from jinja2 import Environment
import mediapipe as mp
import numpy as np
import pandas as pd
from scipy.spatial.distance import euclidean
from fastdtw import fastdtw
from PIL import Image
from Converter import Conveter
from MuayThai import MuayThai
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'upload_video'
app.config['TUTORIAL_FOLDER'] = 'tutorial'
app.config['IMAGE_FOLDER'] = 'image_assets'
app.config['POSE_IMAGES'] = 'pose_images'
app.secret_key = '198237645'
env = Environment()
env.globals.update(enumerate=enumerate)
def define_pier(selected_pier):
if selected_pier == "pier1":
pier = "ท่าสลับฟันปลา"
elif selected_pier == "pier2":
pier = "ท่าตาเถรค้ำพัก"
elif selected_pier == "pier3":
pier = "ท่ามอญยันหลัก"
elif selected_pier == "pier4":
pier = "ท่าดับชวาลา"
elif selected_pier == "pier5":
pier = "ท่าหักคอเอราวัณ"
return pier
@app.route('/')
def index():
return render_template('index.html')
@app.route('/validate', methods=['GET', 'POST'])
def validate():
upload_folder = './upload_video/'
if not os.path.exists(upload_folder):
os.makedirs(upload_folder)
if request.method == 'POST':
# Check if pier is selected
if 'pier' not in request.form:
error_message = 'กรุณาเลือกท่ามวยไทยที่ต้องการประเมินด้วย'
return render_template('error.html', error_message=error_message)
# Check if file is uploaded
if 'video' not in request.files:
error_message = 'กรุณาอัพโหลดคลิปที่ต้องการประเมินด้วย'
return render_template('error.html', error_message=error_message)
# Check if file is not empty
video_file = request.files['video']
if video_file.filename == '':
error_message = 'กรุณาอัพโหลดคลิปที่ต้องการประเมินด้วย'
return render_template('error.html', error_message=error_message)
# Check if file is a video
video_check = video_file.filename.split('.')
video_tag = ['mp4', 'mov', 'webm', 'avi', 'wmv']
if video_check[-1].lower() not in video_tag:
error_message = 'กรุณาอัพโหลดไฟล์วิดีโอ'
return render_template('error.html', error_message=error_message)
# Save file to upload_video folder + rename the file
num_files = len([f for f in os.listdir('upload_video') if os.path.isfile(os.path.join('upload_video', f))])
video_name = str(num_files + 1) + '.MOV'
video_path = os.path.join(upload_folder, video_name)
video_file.save(video_path)
# Define the selected pier
selected_pier = request.form['pier']
pier = define_pier(selected_pier)
# Put the value into session
session['selected_pier'] = selected_pier
session['pier'] = pier
session['video_path'] = video_path
session['video_file'] = video_name
return render_template('pier.html', video_file=video_name, pier=pier)
else:
return render_template('index.html')
@app.route('/upload_video/<filename>')
def upload_video(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
@app.route('/tutorial/<filename>')
def tutorial(filename):
return send_from_directory(app.config['TUTORIAL_FOLDER'], filename)
@app.route('/image/<filename>')
def image(filename):
return send_from_directory(app.config['IMAGE_FOLDER'], filename)
@app.route('/pose_images/<filename>')
def pose_images(filename):
return send_from_directory(app.config['POSE_IMAGES'], filename)
def find_missing(lst, step):
step_missed = []
for i in range(1, step+1):
if lst.count(i) == 0:
step_missed.append(i)
return step_missed
@app.route('/loading')
def loading():
return render_template('loading.html')
@app.route('/grading')
def grading():
return render_template('grading.html')
@app.route('/check')
def check():
video_path = session.get('video_path',None)
# Model code
user_folder = './user_data/'
if not os.path.exists(user_folder):
os.makedirs(user_folder)
user_converter = Conveter(video_path, user_folder)
clip_df, pose_images = user_converter.convert_video_to_node()
user_converter.write_video_node_to_csv(clip_df, 'user.csv')
# Create folder to store pose_images image
pose_images_folder = './pose_images'
if not os.path.exists(pose_images_folder):
os.makedirs(pose_images_folder)
# Save each ndarray as an image file
image_filenames = []
for i, image in enumerate(pose_images):
# Convert the color channels to RGB order by reversing the order of the last axis
image = image[..., ::-1]
# Save ndarray to image and save to folder
image_filename = f'{pose_images_folder}/pose{i}.jpg'
Image.fromarray(image).save(image_filename)
image_filenames.append('pose' + str(i) + '.jpg')
return render_template('check.html', pose_images=image_filenames)
@app.route('/result')
def result():
video_file = session.get('video_file',None)
pier = session.get('pier',None)
video_path = session.get('video_path',None)
if pier == "ท่าสลับฟันปลา":
true_df = pd.read_csv('./trainer/1/true.csv')
cal_df = pd.read_csv('./trainer/1/cal.csv')
trainer_df = pd.read_csv('./trainer/1/clip.csv')
true_backup_df = pd.read_csv('./trainer/1/true_backup.csv')
failed_df = pd.read_csv('./trainer/1/failed.csv')
#Dtw
number_pier = 1
distance_point = 150
#Grading
grade_df = pd.read_csv('./trainer/1/grade.csv')
mean = 41.3333303030303
std = 32.76412259432642
elif pier == "ท่าตาเถรค้ำพัก":
true_df = pd.read_csv('./trainer/6/true.csv')
cal_df =pd.read_csv('./trainer/6/cal.csv')
trainer_df = pd.read_csv('./trainer/6/clip.csv')
true_backup_df = pd.read_csv('./trainer/6/true_backup.csv')
failed_df = pd.read_csv('./trainer/6/failed.csv')
#Dtw
number_pier = 6
distance_point = 160
#Grading
grade_df = pd.read_csv('./trainer/6/grade.csv')
mean = 41.3333303030303
std = 32.76412259432642
elif pier == "ท่ามอญยันหลัก":
true_df = pd.read_csv('./trainer/7/true.csv')
cal_df = pd.read_csv('./trainer/7/cal.csv')
trainer_df = pd.read_csv('./trainer/7/clip.csv')
true_backup_df = pd.read_csv('./trainer/7/true_backup.csv')
failed_df = pd.read_csv('./trainer/7/failed.csv')
#Dtw
number_pier = 7
distance_point = 50
#Grading
grade_df = pd.read_csv('./trainer/7/grade.csv')
mean = 41.3333303030303
std = 32.76412259432642
elif pier == "ท่าดับชวาลา":
true_df = pd.read_csv('./trainer/13/true.csv')
cal_df = pd.read_csv('./trainer/13/cal.csv')
trainer_df = pd.read_csv('./trainer/13/clip.csv')
true_backup_df = pd.read_csv('./trainer/13/true_backup.csv')
failed_df = pd.read_csv('./trainer/13/failed.csv')
#Dtw
number_pier = 13
distance_point = 150
#Grading
grade_df = pd.read_csv('./trainer/13/grade.csv')
mean = 41.3333303030303
std = 32.76412259432642
elif pier == "ท่าหักคอเอราวัณ":
true_df = pd.read_csv('./trainer/15/true.csv')
cal_df = pd.read_csv('./trainer/15/cal.csv')
trainer_df = pd.read_csv('./trainer/15/clip.csv')
true_backup_df = pd.read_csv('./trainer/15/true_backup.csv')
failed_df = pd.read_csv('./trainer/15/failed.csv')
#Dtw
number_pier = 15
distance_point = 150
#Grading
grade_df = pd.read_csv('./trainer/15/grade.csv')
mean = 41.3333303030303
std = 32.76412259432642
del true_df['Unnamed: 0']
del cal_df['Unnamed: 0']
del failed_df['Unnamed: 0']
user_df = pd.read_csv('./user_data/user.csv')
del user_df['Unnamed: 0']
user_muay = MuayThai(video_path, user_df, 4, true_df, cal_df)
user_point, user_true_frames, user_true_angles, user_true_steps, user_failed_steps = user_muay.check()
#print(user_point)
# Seperate to each result page
# This is result_2
if (user_point < user_muay.step):
print('bad')
user_backup_muay = MuayThai(video_path, user_df, 4, true_backup_df, cal_df)
user_backup_point, user_backup_true_frames, user_backup_true_angles, user_backup_true_steps, user_backup_failed_steps = user_backup_muay.check()
if (user_backup_point < user_backup_muay.step):
step_missed = find_missing(user_backup_true_steps, 4)
#Answer
step_missed_str = ', '.join(map(str, step_missed))
print(step_missed_str)
print(user_backup_failed_steps)
# Get detail for failed step
failed_info = {}
for step, ls_sub in user_backup_failed_steps.items():
if len(ls_sub) != 0:
temp = []
for sub_step in ls_sub:
failed_label = failed_df.loc[(failed_df['step'] == step) & (failed_df['sub_step'] == sub_step), 'failed_label'].iloc[0]
temp.append(failed_label)
failed_info[step] = temp
# print(failed_info)
return render_template('result_2.html', video_file=video_file, pier=pier, step_missed_str=step_missed_str, failed_info=failed_info)
user_true_angles = user_backup_true_angles
# This is result_1
print('good')
max_angles_len_user = len(max(user_true_angles, key=len))
user_padding_angle = [np.pad(arr,
pad_width=max_angles_len_user-len(arr),
mode='constant',
constant_values=0)[max_angles_len_user-len(arr):] for arr in user_true_angles]
clip_max = 35
point_criterion = 0
for i in range(1, clip_max+1):
trainer_muay = MuayThai(''.format(i),
trainer_df[trainer_df['clip_name'] == '{}_{}'.format(number_pier, i)],
4, true_df, cal_df)
trainer_point, trainer_true_frames, trainer_true_angles, trainer_true_steps, trainer_failed_steps = trainer_muay.check()
max_angles_len_train = len(max(trainer_true_angles, key=len))
trainer_padding_angle = [np.pad(arr,
pad_width=max_angles_len_train-len(arr),
mode='constant',
constant_values=0)[max_angles_len_train-len(arr):] for arr in trainer_true_angles]
distance, path = fastdtw(trainer_padding_angle, user_padding_angle, dist=euclidean)
if (distance <= distance_point):
point_criterion += 1
#Answer of similarity
similarity = (point_criterion/clip_max)*100
print(similarity)
#Answer of grade
z_score = (similarity-mean)/std
t_score = (z_score*10)+50
print('T_score', t_score)
grade = 'N'
if t_score >= grade_df.loc[grade_df['grade'] == 'A', 'min'].iloc[0]:
grade = 'A'
elif t_score >= grade_df.loc[grade_df['grade'] == 'B', 'min'].iloc[0] and t_score < grade_df.loc[grade_df['grade'] == 'B', 'max'].iloc[0]:
grade = 'B'
elif t_score >= grade_df.loc[grade_df['grade'] == 'C', 'min'].iloc[0] and t_score < grade_df.loc[grade_df['grade'] == 'C', 'max'].iloc[0]:
grade = 'C'
elif t_score < grade_df.loc[grade_df['grade'] == 'D', 'max'].iloc[0]:
grade = 'D'
print(grade)
similarity = round(similarity, 2)
return render_template('result_1.html', video_file=video_file, pier=pier, similarity=similarity, grade=grade)
#End of model code
if __name__ == '__main__':
app.run(debug=True)