-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpret_save.py
66 lines (54 loc) · 2.44 KB
/
interpret_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 18 23:33:02 2019
@author: Emmanuel
"""
from pandas_ods_reader import read_ods
import pandas as pd
papers = 'papers.ods'
articles = 'articles.ods'
# load a file that does not contain a header row columns
papers_df = read_ods(papers, 1, headers=False, columns=['paper', 'number', 'year', 'place'])
articles_df = read_ods(articles, 1, headers=False, columns=['id', 'paper', 'year_number', 'description'])
#convert to year_number
papers_df['year_number'] = [str(int(year)) + ':' + str(int(number)) for (year, number) in zip(papers_df['year'], papers_df['number'])]
#Cleaning up old columns:
del papers_df['year']
del papers_df['number']
Agrarisch_nieuwsblad = ['Agr Nieuwsb', 'Agr NB', 'AN']
Hollandsch_nieuwsblad = ['Hollands nieuws', 'HNB', 'HN']
Bataafsche_staats__courant = ['Bataafse staatscourant', 'Bataafsche Staatscourant', 'BS']
Dagelijksche_beurscourant = ['Dag beurscourant', 'Dagelijkse Beurskrant']
places = [None] * articles_df.shape[0]
#for each year and number add a place and add correct paper
for index, row in articles_df.iterrows():
if row['paper'] in Agrarisch_nieuwsblad:
articles_df.iloc[index, 1] = 'Agrarisch nieuwsblad'
elif row['paper'] in Hollandsch_nieuwsblad:
articles_df.iloc[index, 1] = 'Hollandsch nieuwsblad'
elif row['paper'] in Bataafsche_staats__courant:
articles_df.iloc[index, 1] = 'Bataafsche staats-courant'
elif row['paper'] in Dagelijksche_beurscourant:
articles_df.iloc[index, 1] = 'Dagelijksche beurscourant'
papers = papers_df.loc[papers_df['year_number'] == row['year_number']]
paper = papers.loc[papers['paper'] == articles_df.iloc[index, 1]]
places[index] = paper.iloc[0, 1]
articles_df['place'] = places
#first split article year_number into year and number
year_number = articles_df['year_number'].str.split(':')
#make year and number columns:
years = [element[0] for element in year_number]
#make number column:
numbers = [element[1] for element in year_number]
#add years and numbers to articles_df
articles_df['year'] = years
articles_df['number'] = numbers
#delete old year_number column:
del articles_df['year_number']
#pickle because runtime takes long.
articles_df.to_pickle('combined.pkl')
articles_df = pd.read_pickle('combined.pkl')
#take sample 500
part = articles_df.sample(500)
#dangerous overwriting
#part.to_html('partial_search.html')