diff --git a/library/aesni.c b/library/aesni.c index 152a2acb58f7..410e1c19b670 100644 --- a/library/aesni.c +++ b/library/aesni.c @@ -89,29 +89,29 @@ int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, unsigned nr = ctx->nr; // Number of remaining rounds // Load round key 0 - __m128i xmm0; - memcpy(&xmm0, input, 16); - xmm0 = _mm_xor_si128(xmm0, rk[0]); // xmm0 ^= *rk; + __m128i state; + memcpy(&state, input, 16); + state = _mm_xor_si128(state, rk[0]); // state ^= *rk; ++rk; --nr; if (mode == 0) { while (nr != 0) { - xmm0 = _mm_aesdec_si128(xmm0, *rk); + state = _mm_aesdec_si128(state, *rk); ++rk; --nr; } - xmm0 = _mm_aesdeclast_si128(xmm0, *rk); + state = _mm_aesdeclast_si128(state, *rk); } else { while (nr != 0) { - xmm0 = _mm_aesenc_si128(xmm0, *rk); + state = _mm_aesenc_si128(state, *rk); ++rk; --nr; } - xmm0 = _mm_aesenclast_si128(xmm0, *rk); + state = _mm_aesenclast_si128(state, *rk); } - memcpy(output, &xmm0, 16); + memcpy(output, &state, 16); return 0; } @@ -141,25 +141,23 @@ static void gcm_clmul(const __m128i aa, const __m128i bb, static void gcm_shift(__m128i *cc, __m128i *dd) { - /* - * Now shift the result one bit to the left, - * taking advantage of [CLMUL-WP] eq 27 (p. 18) - */ - // // *cc = r1:r0 - // // *dd = r3:r2 - __m128i xmm1 = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1 - __m128i xmm2 = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1 - __m128i xmm3 = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63 - __m128i xmm4 = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63 - __m128i xmm5 = _mm_srli_si128(xmm3, 8); // 0:r1>>63 - xmm3 = _mm_slli_si128(xmm3, 8); // r0>>63:0 - xmm4 = _mm_slli_si128(xmm4, 8); // 0:r1>>63 - - *cc = _mm_or_si128(xmm1, xmm3); // r1<<1|r0>>63:r0<<1 - *dd = _mm_or_si128(_mm_or_si128(xmm2, xmm4), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63 + /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left, + * taking advantage of [CLMUL-WP] eq 27 (p. 18). */ + // // *cc = r1:r0 + // // *dd = r3:r2 + __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1 + __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1 + __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63 + __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63 + __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63 + cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0 + dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63 + + *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1 + *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63 } -static __m128i gcm_reduce1(__m128i xx) +static __m128i gcm_reduce(__m128i xx) { // // xx = x1:x0 /* [CLMUL-WP] Algorithm 5 Step 2 */ @@ -170,7 +168,7 @@ static __m128i gcm_reduce1(__m128i xx) return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0 } -static __m128i gcm_reduce2(__m128i dx) +static __m128i gcm_mix(__m128i dx) { /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */ __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0' @@ -206,8 +204,8 @@ void mbedtls_aesni_gcm_mult(unsigned char c[16], * using [CLMUL-WP] algorithm 5 (p. 18). * Currently dd:cc holds x3:x2:x1:x0 (already shifted). */ - __m128i dx = gcm_reduce1(cc); - __m128i xh = gcm_reduce2(dx); + __m128i dx = gcm_reduce(cc); + __m128i xh = gcm_mix(dx); cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0 /* Now byte-reverse the outputs */ @@ -237,27 +235,27 @@ void mbedtls_aesni_inverse_key(unsigned char *invkey, /* * Key expansion, 128-bit case */ -static __m128i aesni_set_rk_128(__m128i xmm0, __m128i xmm1) +static __m128i aesni_set_rk_128(__m128i state, __m128i xword) { /* * Finish generating the next round key. * - * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff - * with X = rot( sub( r3 ) ) ^ RCON. + * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff + * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST). * - * On exit, xmm1 is r7:r6:r5:r4 + * On exit, xword is r7:r6:r5:r4 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 * and this is returned, to be written to the round key buffer. */ - xmm1 = _mm_shuffle_epi32(xmm1, 0xff); // X:X:X:X - xmm1 = _mm_xor_si128(xmm1, xmm0); // X+r3:X+r2:X+r1:r4 - xmm0 = _mm_slli_si128(xmm0, 4); // r2:r1:r0:0 - xmm1 = _mm_xor_si128(xmm1, xmm0); // X+r3+r2:X+r2+r1:r5:r4 - xmm0 = _mm_slli_si128(xmm0, 4); // r1:r0:0:0 - xmm1 = _mm_xor_si128(xmm1, xmm0); // X+r3+r2+r1:r6:r5:r4 - xmm0 = _mm_slli_si128(xmm0, 4); // r0:0:0:0 - xmm1 = _mm_xor_si128(xmm1, xmm0); // r7:r6:r5:r4 - return xmm1; + xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X + xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4 + state = _mm_slli_si128(state, 4); // r2:r1:r0:0 + xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4 + state = _mm_slli_si128(state, 4); // r1:r0:0:0 + xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4 + state = _mm_slli_si128(state, 4); // r0:0:0:0 + state = _mm_xor_si128(xword, state); // r7:r6:r5:r4 + return state; } static void aesni_setkey_enc_128(unsigned char *rk_bytes, @@ -281,39 +279,40 @@ static void aesni_setkey_enc_128(unsigned char *rk_bytes, /* * Key expansion, 192-bit case */ -static void aesni_set_rk_192(__m128i *xmm0, __m128i *xmm1, __m128i xmm2, +static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword, unsigned char *rk) { /* * Finish generating the next 6 quarter-keys. * - * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 - * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. + * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4 + * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON + * (obtained with AESKEYGENASSIST). * - * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 + * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10 * and those are written to the round key buffer. */ - xmm2 = _mm_shuffle_epi32(xmm2, 0x55); // X:X:X:X - xmm2 = _mm_xor_si128(xmm2, *xmm0); // X+r3:X+r2:X+r1:X+r0 - *xmm0 = _mm_slli_si128(*xmm0, 4); // r2:r1:r0:0 - xmm2 = _mm_xor_si128(xmm2, *xmm0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0 - *xmm0 = _mm_slli_si128(*xmm0, 4); // r1:r0:0:0 - xmm2 = _mm_xor_si128(xmm2, *xmm0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0 - *xmm0 = _mm_slli_si128(*xmm0, 4); // r0:0:0:0 - xmm2 = _mm_xor_si128(xmm2, *xmm0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0 - *xmm0 = xmm2; // = r9:r8:r7:r6 - - xmm2 = _mm_shuffle_epi32(xmm2, 0xff); // r9:r9:r9:r9 - xmm2 = _mm_xor_si128(xmm2, *xmm1); // stuff:stuff:r9+r5:r9+r4 - *xmm1 = _mm_slli_si128(*xmm1, 4); // stuff:stuff:r4:0 - xmm2 = _mm_xor_si128(xmm2, *xmm1); // stuff:stuff:r9+r5+r4:r9+r4 - *xmm1 = xmm2; // = stuff:stuff:r11:r10 - - /* Store xmm0 and the low half of xmm1 into rk, which is conceptually + xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X + xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0 + *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0 + xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0 + *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0 + xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0 + *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0 + xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0 + *state0 = xword; // = r9:r8:r7:r6 + + xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9 + xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4 + *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0 + xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4 + *state1 = xword; // = stuff:stuff:r11:r10 + + /* Store state0 and the low half of state1 into rk, which is conceptually * an array of 24-byte elements. Since 24 is not a multiple of 16, - * rk is not necessarily aligned so just `*rk = *xmm0` doesn't work. */ - memcpy(rk, xmm0, 16); - _mm_storeu_si64(rk + 16, *xmm1); + * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */ + memcpy(rk, state0, 16); + _mm_storeu_si64(rk + 16, *state1); } static void aesni_setkey_enc_192(unsigned char *rk, @@ -322,55 +321,56 @@ static void aesni_setkey_enc_192(unsigned char *rk, /* First round: use original key */ memcpy(rk, key, 24); /* aes.c guarantees that rk is aligned on a 16-byte boundary. */ - __m128i xmm0 = ((__m128i *) rk)[0]; - __m128i xmm1 = _mm_loadl_epi64(((__m128i *) rk) + 1); - - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x01), rk + 24 * 1); - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x02), rk + 24 * 2); - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x04), rk + 24 * 3); - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x08), rk + 24 * 4); - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x10), rk + 24 * 5); - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x20), rk + 24 * 6); - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x40), rk + 24 * 7); - aesni_set_rk_192(&xmm0, &xmm1, _mm_aeskeygenassist_si128(xmm1, 0x80), rk + 24 * 8); + __m128i state0 = ((__m128i *) rk)[0]; + __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1); + + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1); + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2); + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3); + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4); + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5); + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6); + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7); + aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8); } /* * Key expansion, 256-bit case */ -static void aesni_set_rk_256(__m128i xmm0, __m128i xmm1, __m128i xmm2, +static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword, __m128i *rk0, __m128i *rk1) { /* * Finish generating the next two round keys. * - * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and - * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON + * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and + * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON + * (obtained with AESKEYGENASSIST). * * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12 */ - xmm2 = _mm_shuffle_epi32(xmm2, 0xff); - xmm2 = _mm_xor_si128(xmm2, xmm0); - xmm0 = _mm_slli_si128(xmm0, 4); - xmm2 = _mm_xor_si128(xmm2, xmm0); - xmm0 = _mm_slli_si128(xmm0, 4); - xmm2 = _mm_xor_si128(xmm2, xmm0); - xmm0 = _mm_slli_si128(xmm0, 4); - xmm0 = _mm_xor_si128(xmm0, xmm2); - *rk0 = xmm0; - - /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) + xword = _mm_shuffle_epi32(xword, 0xff); + xword = _mm_xor_si128(xword, state0); + state0 = _mm_slli_si128(state0, 4); + xword = _mm_xor_si128(xword, state0); + state0 = _mm_slli_si128(state0, 4); + xword = _mm_xor_si128(xword, state0); + state0 = _mm_slli_si128(state0, 4); + state0 = _mm_xor_si128(state0, xword); + *rk0 = state0; + + /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 ) * and proceed to generate next round key from there */ - xmm2 = _mm_aeskeygenassist_si128(xmm0, 0x00); - xmm2 = _mm_shuffle_epi32(xmm2, 0xaa); - xmm2 = _mm_xor_si128(xmm2, xmm1); - xmm1 = _mm_slli_si128(xmm1, 4); - xmm2 = _mm_xor_si128(xmm2, xmm1); - xmm1 = _mm_slli_si128(xmm1, 4); - xmm2 = _mm_xor_si128(xmm2, xmm1); - xmm1 = _mm_slli_si128(xmm1, 4); - xmm1 = _mm_xor_si128(xmm1, xmm2); - *rk1 = xmm1; + xword = _mm_aeskeygenassist_si128(state0, 0x00); + xword = _mm_shuffle_epi32(xword, 0xaa); + xword = _mm_xor_si128(xword, state1); + state1 = _mm_slli_si128(state1, 4); + xword = _mm_xor_si128(xword, state1); + state1 = _mm_slli_si128(state1, 4); + xword = _mm_xor_si128(xword, state1); + state1 = _mm_slli_si128(state1, 4); + state1 = _mm_xor_si128(state1, xword); + *rk1 = state1; } static void aesni_setkey_enc_256(unsigned char *rk_bytes,