-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtrain.py
119 lines (75 loc) · 3.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import sys
import argparse
import time
import dataloader
import net
import numpy as np
from torchvision import transforms
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def train(config):
dehaze_net = net.dehaze_net().cuda()
dehaze_net.apply(weights_init)
train_dataset = dataloader.dehazing_loader(config.orig_images_path,
config.hazy_images_path)
val_dataset = dataloader.dehazing_loader(config.orig_images_path,
config.hazy_images_path, mode="val")
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.train_batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=config.val_batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True)
criterion = nn.MSELoss().cuda()
optimizer = torch.optim.Adam(dehaze_net.parameters(), lr=config.lr, weight_decay=config.weight_decay)
dehaze_net.train()
for epoch in range(config.num_epochs):
for iteration, (img_orig, img_haze) in enumerate(train_loader):
img_orig = img_orig.cuda()
img_haze = img_haze.cuda()
clean_image = dehaze_net(img_haze)
loss = criterion(clean_image, img_orig)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm(dehaze_net.parameters(),config.grad_clip_norm)
optimizer.step()
if ((iteration+1) % config.display_iter) == 0:
print("Loss at iteration", iteration+1, ":", loss.item())
if ((iteration+1) % config.snapshot_iter) == 0:
torch.save(dehaze_net.state_dict(), config.snapshots_folder + "Epoch" + str(epoch) + '.pth')
# Validation Stage
for iter_val, (img_orig, img_haze) in enumerate(val_loader):
img_orig = img_orig.cuda()
img_haze = img_haze.cuda()
clean_image = dehaze_net(img_haze)
torchvision.utils.save_image(torch.cat((img_haze, clean_image, img_orig),0), config.sample_output_folder+str(iter_val+1)+".jpg")
torch.save(dehaze_net.state_dict(), config.snapshots_folder + "dehazer.pth")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--orig_images_path', type=str, default="data/images/")
parser.add_argument('--hazy_images_path', type=str, default="data/data/")
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--grad_clip_norm', type=float, default=0.1)
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--val_batch_size', type=int, default=8)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--display_iter', type=int, default=10)
parser.add_argument('--snapshot_iter', type=int, default=200)
parser.add_argument('--snapshots_folder', type=str, default="snapshots/")
parser.add_argument('--sample_output_folder', type=str, default="samples/")
config = parser.parse_args()
if not os.path.exists(config.snapshots_folder):
os.mkdir(config.snapshots_folder)
if not os.path.exists(config.sample_output_folder):
os.mkdir(config.sample_output_folder)
train(config)