-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
242 lines (184 loc) · 7.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import datetime
import time
import os
import platform
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from torch.backends import cudnn
from torch.utils.data import DataLoader
from torchvision import transforms
from tensorboardX import SummaryWriter
from tqdm import tqdm
from settings import getConfig
import joint_transforms
from config import *
from config import backbone_path
from datasets import ImageFolder
from misc import AvgMeter, check_mkdir
from PFNet import PFNet
import settings
import loss
cudnn.benchmark = True
torch.manual_seed(2021)
#Martin CrossPlatform
currOS = platform.system()
cudnn.benchmark = True
#Kaney args parameter
opt = getConfig()
print(opt)
device_ids = [opt.device]
ckpt_path = opt.ckpt_path
exp_name = opt.exp_name
args = {
'epoch_num': opt.epochs,
'train_batch_size': opt.batch_size,
'last_epoch': opt.last_epoch,
'lr': opt.lr,
'lr_decay': opt.lr_decay,
'weight_decay': opt.weight_decay,
'momentum': opt.momentum,
'snapshot': opt.snap_shot,
'scale': opt.img_size,
'save_point': opt.save_point,
'poly_train': opt.poly_train,
'optimizer': opt.optimizer,
}
print(torch.__version__)
# Path.
check_mkdir(ckpt_path)
check_mkdir(os.path.join(ckpt_path, exp_name))
vis_path = os.path.join(ckpt_path, exp_name, 'log')
check_mkdir(vis_path)
log_path = os.path.join(ckpt_path, exp_name, str(datetime.datetime.now()) + '.txt')
writer = SummaryWriter(log_dir=vis_path, comment=exp_name)
# Transform Data.
joint_transform = joint_transforms.Compose([
joint_transforms.RandomHorizontallyFlip(),
joint_transforms.Resize((args['scale'], args['scale']))
])
img_transform = transforms.Compose([
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
target_transform = transforms.ToTensor()
# Prepare Data Set.
train_set = ImageFolder(train_path, joint_transform, img_transform, target_transform)
print("Train set: {}".format(train_set.__len__()))
train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=opt.num_workers, shuffle=True)
total_epoch = args['epoch_num'] * len(train_loader)
# loss function
#Martin
if currOS == 'Darwin':
structure_loss = loss.structure_loss().to('mps')
bce_loss = nn.BCEWithLogitsLoss().to('mps')
iou_loss = loss.IOU().to('mps')
else:
structure_loss = loss.structure_loss().cuda(device_ids[0])
bce_loss = nn.BCEWithLogitsLoss().cuda(device_ids[0])
iou_loss = loss.IOU().cuda(device_ids[0])
def bce_iou_loss(pred, target):
bce_out = bce_loss(pred, target)
iou_out = iou_loss(pred, target)
loss = bce_out + iou_out
return loss
def main():
print(opt)
print(args)
print(exp_name)
#Martin - depending on what operating system we are using, choose how to connect to GPU
if currOS == 'Darwin':
net = PFNet(backbone_path).to('mps').train()
else:
net = PFNet(backbone_path).cuda(device_ids[0]).train() # Kaney modify so it works with PC
if args['optimizer'] == 'Adam':
print("Adam")
optimizer = optim.Adam([
{'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'],
'lr': 2 * args['lr']},
{'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'],
'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']}
])
else:
print("SGD")
optimizer = optim.SGD([
{'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'],
'lr': 2 * args['lr']},
{'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'],
'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']}
], momentum=args['momentum'])
if len(args['snapshot']) > 0:
print('Training Resumes From \'%s\'' % args['snapshot'])
net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth')))
total_epoch = (args['epoch_num'] - int(args['snapshot'])) * len(train_loader)
print(total_epoch)
net = nn.DataParallel(net, device_ids=device_ids)
print("Using {} GPU(s) to Train.".format(len(device_ids)))
open(log_path, 'w').write(str(args) + '\n\n')
train(net, optimizer)
writer.close()
def train(net, optimizer):
curr_iter = 1
start_time = time.time()
for epoch in range(args['last_epoch'] + 1, args['last_epoch'] + 1 + args['epoch_num']):
loss_record, loss_1_record, loss_2_record, loss_3_record, loss_4_record = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter()
train_iterator = tqdm(train_loader, total=len(train_loader))
for data in train_iterator:
if args['poly_train']:
base_lr = args['lr'] * (1 - float(curr_iter) / float(total_epoch)) ** args['lr_decay']
optimizer.param_groups[0]['lr'] = 2 * base_lr
optimizer.param_groups[1]['lr'] = 1 * base_lr
inputs, labels = data
batch_size = inputs.size(0)
#Martin
if currOS == 'Darwin':
inputs = Variable(inputs).to('mps')
labels = Variable(labels).to('mps')
else:
inputs = Variable(inputs).cuda(device_ids[0])
labels = Variable(labels).cuda(device_ids[0])
optimizer.zero_grad()
predict_1, predict_2, predict_3, predict_4 = net(inputs)
loss_1 = bce_iou_loss(predict_1, labels)
loss_2 = structure_loss(predict_2, labels)
loss_3 = structure_loss(predict_3, labels)
loss_4 = structure_loss(predict_4, labels)
loss = 1 * loss_1 + 1 * loss_2 + 2 * loss_3 + 4 * loss_4
loss.backward()
optimizer.step()
loss_record.update(loss.data, batch_size)
loss_1_record.update(loss_1.data, batch_size)
loss_2_record.update(loss_2.data, batch_size)
loss_3_record.update(loss_3.data, batch_size)
loss_4_record.update(loss_4.data, batch_size)
if curr_iter % 10 == 0:
writer.add_scalar('loss', loss, curr_iter)
writer.add_scalar('loss_1', loss_1, curr_iter)
writer.add_scalar('loss_2', loss_2, curr_iter)
writer.add_scalar('loss_3', loss_3, curr_iter)
writer.add_scalar('loss_4', loss_4, curr_iter)
log = '[%3d], [%6d], [%.6f], [%.5f], [%.5f], [%.5f], [%.5f], [%.5f]' % \
(epoch, curr_iter, base_lr, loss_record.avg, loss_1_record.avg, loss_2_record.avg,
loss_3_record.avg, loss_4_record.avg)
train_iterator.set_description(log)
open(log_path, 'a').write(log + '\n')
curr_iter += 1
if epoch in args['save_point']:
net.cpu()
torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch))
#Martin
if currOS == 'Darwin':
net.to('mps')
else:
net.cuda(device_ids[0])
if epoch >= args['epoch_num']:
net.cpu()
torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch))
print("Total Training Time: {}".format(str(datetime.timedelta(seconds=int(time.time() - start_time)))))
print(exp_name)
print("Optimization Have Done!")
return
if __name__ == '__main__':
main()