-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathnumPy.py
93 lines (52 loc) · 1.42 KB
/
numPy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
#tupla
arr = np.array([1, 2, 3, 4, 5])
# elenco
arr2 = np.array((1, 2, 3, 4, 5))
print(arr)
# matrice 0-d zero dimensioni
arr3 = np.array(42)
print(arr3)
# matrice 1-d zero dimensioni
arr4 = np.array([1, 2, 3, 4, 5])
print(arr4)
# matrice 2-d zero dimensioni
arr5 = np.array([[1, 2, 3], [4, 5, 6]])
print(arr5)
# matrice 3-d zero dimensioni
arr6 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(arr6)
print(arr6.ndim) # per sapere quante dimensioni ha un insieme
# quella sarà la dimenzione massima del nostro insieme
arr7 = np.array([1, 2, 3, 4, 5], ndmin=1)
print(arr7)
print('number of dimensions :', arr7.ndim)
print(arr7[0])
print(arr7[2] + arr7[3])
arr8 = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('2nd element on 1st row: ', arr8[0, 1])
arr9 = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print(arr9[0, 1, 2])
print(arr9[1, 1, 1 ])
from numpy import random
x = random.randint(100)
print(x)
# crea un array 1-D con 5 posizioni riempite con numeri random da 1 a 100
x2 =random.randint(100, size=(5))
print(x2)
x3 = random.randint(100, size=(3, 5))
print(x3)
#
x = random.rand(5)
print(x)
x = [1, 2, 3, 4]
y = [4, 5, 6, 7]
z = []
for i, j in zip(x, y):
z.append(i + j)
print(z)
x = [1, 2, 3, 4]
y = [4, 5, 6, 7]
z = np.add(x, y)
print(z)
print(type(np.add))