forked from NewSoupVi/GSV2SVF-reduced
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVFCore.py
446 lines (414 loc) · 17 KB
/
SVFCore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import sys
import os
SVFHOME = os.environ['SVFHOME']
GSV_API_URL = "https://maps.googleapis.com/maps/api/streetview"
# Import Pillow:
from PIL import Image
from io import StringIO
from io import BytesIO
import numpy as np
from math import *
import requests
import scipy
import argparse
import math
import cv2
import time
import caffe
import shapefile
import shutil
from shutil import copyfile
import json
from skimage.util import img_as_ubyte
class Config():
apikey = ""
lat = 42.345573
lon = -71.098326
cuda = True
def __init__(self):
configFile = SVFHOME + "Config.csv"
if os.path.exists(configFile) == False:
try:
file = open(configFile,"w")
file.write("APIkey," + "\n")
file.write("Lat,40.721441" + "\n")
file.write("Lon,-73.994535" + "\n")
file.write("CUDA,1" + "\n")
file.close()
except Exception as err:
print(str(err))
else:
try:
file = open(configFile,"r")
lines = file.readlines()
file.close()
newPointSet = []
for line in lines:
splits = line.split(",")
if len(splits) < 2:
continue
configName = splits[0].strip().lower()
self.cuda = True
if configName == "apikey":
self.apikey = splits[1].strip()
elif configName == "lat":
self.lat = splits[1].strip()
elif configName == "lon":
self.lon = splits[1].strip()
elif configName == "cuda" and int(splits[1].strip()) == 0:
self.cuda = False
# override cuda config if CAFFE_BLEND env is set
caffeVariant = os.getenv('CAFFE_BLEND', None)
if caffeVariant is not None:
if caffeVariant == 'cpu':
self.cuda = False
if caffeVariant == 'gpu':
self.cuda = True
except Exception as err:
print(str(err))
MyConfig = Config()
class Panorama():
def __init__(self):
self.id = "0"
self.panoid = ""
self.lon = ""
self.lat = ""
self.date = ""
self.svf = -1.0
self.tvf = -1.0
self.bvf = -1.0
self.initialized = False
def fromJSON(self,str):
try:
root = json.loads(str)
if root['status'] != "OK":
return False
location = root['location']
self.date = root['date']
self.panoid = root['pano_id']
self.lat = location['lat']
self.lon = location['lng']
self.initialized = True
return True
except ValueError:
return False
return False
def fromPano(self,pano):
self.id = pano.id
self.panoid = pano.panoid
self.lon = pano.lon
self.lat = pano.lat
self.date = pano.date
self.svf = pano.svf
self.tvf = pano.tvf
self.bvf = pano.bvf
self.initialized = pano.initialized
def fromLocation(self,lat,lon):
url= GSV_API_URL + "/metadata?location=" + str(lat) + "," + str(lon) +"&key="+ MyConfig.apikey
try:
response = requests.get(url)
if response.status_code == requests.codes.ok:
return self.fromJSON(response.content)
except ValueError:
return False
return False
def write(self,filename):
file = open(filename,"w")
file.write(str(self.id) + "," + self.panoid + "," + self.date + "," + str(self.lat) + "," + str(self.lon) + "," + str(self.svf) + "," + str(self.tvf) + "," + str(self.bvf))
file.close()
def read(self,filename):
file = open(filename,"r")
splits = file.readline().split(",")
self.id = splits[0]
self.panoid = splits[1]
self.date = splits[2]
self.lat = float(splits[3])
self.lon = float(splits[4])
self.svf = float(splits[5])
self.tvf = float(splits[6])
self.bvf = float(splits[7])
file.close()
self.initialized = True
def fromline(self,line):
splits = line.split(",")
if len(splits) < 7:
return False
if splits[1] == "" or splits[3] == "" or splits[4] == "":
return False
self.id = splits[0]
self.panoid = splits[1]
self.date = splits[2]
self.lat = float(splits[3])
self.lon = float(splits[4])
self.svf = float(splits[5])
self.tvf = float(splits[6])
self.bvf = float(splits[7])
self.initialized = True
return True
def toString(self):
return str(self.id) + "," + self.panoid + "," + self.date + "," + str(self.lat) + "," + str(self.lon) + "," + str(self.svf) + "," + str(self.tvf) + "," + str(self.bvf)
class GSVCapture():
#def getImage(self, outfile, panoid, xsize, ysize, fov, heading, pitch):
# url = GSV_API_URL + "?size=" + str(xsize) + "x" + str(ysize) + "&pano=" + panoid + "&fov=" + str(fov) + "&heading=" + str(heading) + "&pitch=" + str(pitch) + API_KEY;
# mp3file = urllib2.urlopen(url)
# with open(outfile,'wb') as output:
# output.write(mp3file.read())
# print url
def checkDir(self, dir):
if (dir.endswith('/') or dir.endswith('\\')) == False:
dir = dir + '/'
return dir
def getImage(self, panoId, x, y, zoom,outdir):
taskdir = outdir[:-23]
location = taskdir + "pre_" + panoId + "/" + str(x) + "_" + str(y) + ".jpg"
if os.path.isdir(taskdir + "pre_" + panoId + "/"):
if not os.path.isfile(location):
print(location)
return None
else:
with open(location, "rb") as fh:
return BytesIO(fh.read())
url = "https://" + "geo0.ggpht.com/cbk?cb_client=maps_sv.tactile&authuser=0&hl=en&panoid=" + panoId + "&output=tile&x=" + str(x) + "&y=" + str(y) + "&zoom=" + str(zoom) + "&nbt&fover=2"
outfile = outdir + "/" + str(x) + "_" + str(y) + ".jpg"
#http = urllib3.PoolManager()
#response = http.request('GET', url)
try:
response = requests.get(url)
if response.status_code == requests.codes.ok:
file = BytesIO(response.content)
return file
except ValueError:
return None
return None
#mp3file = urllib3.urlopen(url)
#with open(outfile,'wb') as output:
# output.write(mp3file.read())
def equirectangular2fisheye(self, infile, outfile,isClassified):
img = Image.open(infile)
width, height = img.size
img = img.crop((0,0,width,height/2))
width, height = img.size
nparr = np.asarray(img.copy())
red, green, blue = img.split()
red = np.array(red)
red.flags.writeable = True
green = np.array(green)
green.flags.writeable = True
blue = np.array(blue)
blue.flags.writeable = True
#green[np.where(green == 128)] = 0
#blue[np.where(blue == 128)] = 0
fisheye = np.ndarray(shape=(512,512,3), dtype=np.uint8)
fisheye.fill(0) # Transpose back needed
fisheyesize = 512
x = np.arange(0,512,dtype=float)
x = x / 511.0;
x = (x - 0.5) * 2;
x = np.tile(x,(512,1))
y = x.transpose();
dist2ori = np.sqrt((y * y) + (x * x))
zenithD = dist2ori * 90.0
zenithD[np.where(zenithD <= 0.000000001)] = 0.000000001
zenithR = zenithD * 3.1415926 / 180.0
wproj = np.sin(zenithR) / (zenithD / 90.0);#weight for equal-areal projection
x2 = np.ndarray(shape=(512,512),dtype=float)
x2.fill(0.0)
y2 = np.ndarray(shape=(512,512),dtype=float)
y2.fill(1.0)
cosa = (x*x2 + y*y2) / np.sqrt((x*x + y*y) * (x2*x2+ y2*y2));
lon = np.arccos(cosa) * 180.0 / 3.1415926;
indices = np.where(x > 0)
lon[indices] = 360.0 - lon[indices]
lon = 360.0 - lon
lon = 1.0 -(lon / 360.0)
outside = np.where(dist2ori > 1)
lat = dist2ori
srcx = (lon*(width-1)).astype(int)
srcy = (lat*(height-1)).astype(int)
srcy[np.where(srcy > 255)] = 0
maxx = np.max(srcx)
maxy = np.max(srcy)
indices = (srcx + srcy*width).tolist();
red = np.take(red,np.array(indices))
green = np.take(green,np.array(indices))
blue = np.take(blue,np.array(indices))
red[outside] = 0
green[outside] = 0
blue[outside] = 0
svf = -1
tvf = -1
bvf = -1
backgroundMask = 0 #RGB[0, 0, 0]
skyMask = 65536*128+256*128+128 #RGB[128,128,128]
treeMask = 65536*128+256*128+192 #RGB[128,128,192]
buildingMask = 65536*0+256*0+128 #RGB[0, 0, 128]
if isClassified:
allPixels = 65536 * red + 256 * green + blue
skyIndices = np.where(allPixels == skyMask)
treeIndices = np.where(allPixels == treeMask)
buildIndices = np.where(allPixels == buildingMask)
backgroundIndices = np.where(allPixels != 0)
svf = np.sum(wproj[skyIndices]) / np.sum(wproj[backgroundIndices])
tvf = np.sum(wproj[treeIndices]) / np.sum(wproj[backgroundIndices])
bvf = np.sum(wproj[buildIndices]) / np.sum(wproj[backgroundIndices])
red[skyIndices] = 128
green[skyIndices] = 128
blue[skyIndices] = 128
red[treeIndices] = 128
green[treeIndices] = 128
blue[treeIndices] = 192
red[buildIndices] = 0
green[buildIndices] = 0
blue[buildIndices] = 128
red[outside] = 255
green[outside] = 255
blue[outside] = 255
fisheye = np.dstack((red, green, blue))
Image.fromarray(fisheye).save(outfile)
return [svf,tvf,bvf]
def classify(self,infile,outfile):
input_image = cv2.imread(infile)
input_image = cv2.resize(input_image, (self.input_shape[3],self.input_shape[2]))
input_image = input_image.transpose((2,0,1))
input_image = np.asarray([input_image])
out = self.segnet.forward_all(data=input_image)
segmentation_ind = np.squeeze(self.segnet.blobs['argmax'].data)
segmentation_ind_3ch = np.resize(segmentation_ind,(3,self.input_shape[2],self.input_shape[3]))
segmentation_ind_3ch = segmentation_ind_3ch.transpose(1,2,0).astype(np.uint8)
segmentation_rgb = np.zeros(segmentation_ind_3ch.shape, dtype=np.uint8)
cv2.LUT(segmentation_ind_3ch,self.label_colours,segmentation_rgb)
Image.fromarray(img_as_ubyte(segmentation_rgb)).save(outfile)
def initialize(self,useCUDA):
segnetModel = SVFHOME + "SegNet-Tutorial-master/Example_Models/segnet_model_driving_webdemo.prototxt"
segnetWeights = SVFHOME +"SegNet-Tutorial-master/Example_Models/segnet_weights_driving_webdemo.caffemodel"
segnetColours = SVFHOME +"SegNet-Tutorial-master/Scripts/camvid11.png"
if os.path.exists(segnetWeights) == False:
f = open(segnetWeights, 'wb')
f1 = open(SVFHOME +"SegNet-Tutorial-master/Example_Models/segnet_weights_driving_webdemo_1.caffemodel", 'rb')
f.write(f1.read())
f1.close()
f2 = open(SVFHOME +"SegNet-Tutorial-master/Example_Models/segnet_weights_driving_webdemo_2.caffemodel", 'rb')
f.write(f2.read())
f2.close()
f3 = open(SVFHOME +"SegNet-Tutorial-master/Example_Models/segnet_weights_driving_webdemo_3.caffemodel", 'rb')
f.write(f3.read())
f3.close()
f.close()
# Split into 3 parts as GitHub does not allow larger than 50MB files
#f = open(segnetWeights, 'rb')
#f.seek(0, os.SEEK_END)
#fsize = f.tell()
#f.seek(0)
#partsize = fsize / 3
#fdata = f.read(partsize)
#f1 = open(SVFHOME +"SegNet-Tutorial-master/Example_Models/segnet_weights_driving_webdemo_1.caffemodel", 'wb')
#f1.write(fdata)
#f1.close()
#fdata = f.read(partsize)
#f2 = open(SVFHOME +"SegNet-Tutorial-master/Example_Models/segnet_weights_driving_webdemo_2.caffemodel", 'wb')
#f2.write(fdata)
#f2.close()
#fdata = f.read(fsize-partsize)
#f3 = open(SVFHOME +"SegNet-Tutorial-master/Example_Models/segnet_weights_driving_webdemo_3.caffemodel", 'wb')
#f3.write(fdata)
#f3.close()
#f.close()
self.segnet = caffe.Net(segnetModel,segnetWeights,caffe.TEST)
caffe.set_mode_cpu()
if MyConfig.cuda == True:
caffe.set_mode_gpu()
self.input_shape = self.segnet.blobs['data'].data.shape
self.output_shape = self.segnet.blobs['argmax'].data.shape
self.label_colours = cv2.imread(segnetColours).astype(np.uint8)
def getByID(self, outdir, panoid):
if panoid == '':
return [-1,-1,-1]
outdir = self.checkDir(outdir)
if not os.path.exists(outdir):
os.makedirs(outdir)
#self.getImage(outdir + "/POS_Y.jpg",panoid,600,600,90,0,0)
#self.getImage(outdir + "/POS_X.jpg",panoid,600,600,90,90,0)
#self.getImage(outdir + "/NEG_Y.jpg",panoid,600,600,90,180,0)
#self.getImage(outdir + "/NEG_X.jpg",panoid,600,600,90,270,0)
#self.getImage(outdir + "/NEG_Z.jpg",panoid,600,600,90,0,-90)
#self.getImage(outdir + "/POS_Z.jpg",panoid,600,600,90,0,90)
tilesize = 512
numtilesx = 4
numtilesy = 2
mosaicxsize = tilesize*numtilesx
mosaicysize = tilesize*numtilesy
#start_time = time.time()
mosaic = Image.new("RGB", (mosaicxsize, mosaicysize), "black")
blkpixels = 0
for x in range(0, numtilesx):
for y in range(0, numtilesy):
imageTile = self.getImage(panoid, x, y, 2,outdir)
if imageTile == None:
return ""
img = Image.open(imageTile)
if y == 1:
pix_val = list(img.getdata())
blk1 = pix_val[tilesize*tilesize-1]
blk2 = pix_val[tilesize*(tilesize-1)]
blkpixels = blkpixels + sum(blk1) + sum(blk2)
#print(blk1)
#print(blk2)
#img.save(outdir + str(x) + "_" + str(y) + ".jpg")
mosaic.paste(img,(x*tilesize,y*tilesize,x*tilesize+tilesize,y*tilesize+tilesize))
#elapsed_time = time.time() - start_time
#print("(1) %s seconds ---" % elapsed_time)
#start_time = time.time()
xstart = (512 - 128) / 2;
xsize = mosaicxsize - xstart * 2;
ysize = mosaicysize - (512 - 320);
if blkpixels == 0:
mosaic = mosaic.crop((xstart,0,xstart+xsize,ysize))
mosaic = mosaic.resize((1024,512))
mosaic.save(outdir + "mosaic.png")
self.classify(outdir + "mosaic.png",outdir + "mosaic_classified.png")
self.equirectangular2fisheye(outdir + "mosaic.png",outdir + "fisheye.png",False)
return self.equirectangular2fisheye(outdir + "mosaic_classified.png",outdir + "fisheye_classified.png",True)
#elapsed_time = time.time() - start_time
#print("(5) %s seconds ---" % elapsed_time)
#start_time = time.time()
#os.remove(outdir + "mosaic_classified.png")
def batchGetByID(self, outdir):
outdir = self.checkDir(outdir)
taskFile = outdir + "task.csv"
if not os.path.exists(taskFile):
return
fs = open(taskFile,"r")
lines = fs.readlines()
fs.close()
numtask = len(lines)
taskid = 0.0
for line in lines:
panoid = line.strip()
result = [-1,-1,-1]
taskid = taskid + 1.0
if len(panoid) > 3:
panodir = outdir + panoid + '/'
result = self.getByID(panodir, panoid)
if len(result) < 3:
result = [-1,-1,-1]
fresult = open(panodir + "result.txt","w")
fresult.write(str(result[0]) + "," + str(result[1]) + "," + str(result[2]) + "\n")
fresult.close()
sys.stdout.write("progress: " + "{:.2%}".format(taskid/numtask) + "\n")
sys.stdout.flush()
def getByLatLong(self, outdir, lat,lon):
pano = Panorama();
pano.fromLocation(lat,lon)
if pano.initialized == False:
#print("Not available")
return ""
outdir = self.checkDir(outdir)
outdir = outdir + pano.panoid + '/'
result = self.getByID(outdir, pano.panoid)
if len(result) == 3:
pano.svf = result[0]
pano.tvf = result[1]
pano.bvf = result[2]
panoinfo_file = outdir + "panoinfo.txt"
pano.write(panoinfo_file)
return pano.toString()