-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdmlsenet50.py
140 lines (122 loc) · 4.24 KB
/
dmlsenet50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/4/11 18:04
# @Author : XQP
# @File : ser.py
import torch.nn.functional as F
# from senet.baseline import resnet20
from senet.newse152 import se_resnet152
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import models, transforms
from PIL import Image
import numpy as np
import os, glob
import scipy.io as sio
import torch.hub
import models
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2'
import json
import numpy as np
import openpyxl
import torch
import models
import torch.optim as optim
from PIL import Image
import models
import torch
import torch.optim as optim
import models
from data_loader import get_test_loader, get_train_loader
# from configfa import get_config
from utils import accuracy, AverageMeter, loader_model, loader_model1
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
path1 = "./ckpt/save/600_aug/multi_se_resnet50_se_resnext101_NO1_e600_aug_fa_model_best_DML.pth.tar"
# path2 = "./ckpt/save/400/multi_se5_NO2_e400_fa_ckpt_DML_2_lr001.pth.tar"
# path3 = "./ckpt/save/400/multi_se5_NO3_e400_fa_ckpt_DML_2_lr001.pth.tar"
# path4 = "./ckpt/save/400/multi_se5_NO4_e400_fa_ckpt_DML_2_lr001.pth.tar"
# path5 = "./ckpt/save/400/multi_se5_NO5_e400_fa_ckpt_DML_2_lr001.pth.tar"
# gpu_id = "0,1,2"
# kwargs = {'map_location': lambda storage, loc: storage.cuda(gpu_id)}
# # seres50, _, __ = load_GPUS(9, "se_resnet50", path1)
# seres101, a_, b_ = load_GPUS(9, "se_resnext101", path2)
seres50, _, __ = loader_model1(2, "se_resnet50", path1)
# seresxt101, a_, b_ = loader_model(9, "se_resnext101", path2)
# seres152, c_, d_ = loader_model(9, "se_resnet152", path3)
# seres101, e_, f_ = loader_model(9, "se_resnet101", path4)
# seresxt50, g_, h_ = loader_model(9, "se_resnext50", path5)
from senet.se_resnet1 import se_resnet50
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.model = se_resnet50(num_classes=2)
checkpoint = torch.load(path1)
self.model.load_state_dict(checkpoint['model_state'])
print(self.model)
def save_output(module, input, output):
self.buffer = output
# print(output)
self.model.avgpool.register_forward_hook(save_output)
def forward(self, x):
self.model(x)
return self.buffer
features_dir = './augfafea'
def main():
model = Net()
# model.load_state_dict(torch.load("seresnet50-60a8950a85b2b.pkl"))
model = model.cuda()
model.eval()
extensions = ['jpg', 'jpeg', 'JPG', 'JPEG', 'png']
features = []
files_list = []
imgs_path = open("./SARS-Cov-all.txt", encoding='UTF-8').read().splitlines()
# x = os.walk(data_dir)
# for path, d, filelist in x:
# for filename in filelist:
# file_glob = os.path.join(path, filename)
# files_list.extend(glob.glob(file_glob))
#
# print(files_list)
for i, img in enumerate(imgs_path):
print("%d %s" % (i, img))
print("")
use_gpu = torch.cuda.is_available()
# for x_path in files_list:
# print("x_path" + x_path)
# file_name = x_path.split('/')[-1]
# fx_path = os.path.join(features_dir, file_name + '.txt')
# print(fx_path)
# extractor(x_path, fx_path, model, use_gpu)
# def extractor(img_path, saved_path, net, use_gpu):
for i, im in enumerate(imgs_path):
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()]
)
img = Image.open(im)
img = img.convert("RGB")
img = transform(img)
print(im)
print(img.shape)
x = Variable(torch.unsqueeze(img, dim=0).float(), requires_grad=False)
print(x.shape)
if use_gpu:
x = x.cuda()
model = model.cuda()
y = model(x).cpu()
y = torch.squeeze(y)
y = y.data.numpy()
print(y.shape)
# np.savetxt(saved_path, y, delimiter=',')
feature = np.reshape(y, [1, -1])
features.append(feature)
features = np.array(features)
dic = {'seresnet50': features}
sio.savemat(features_dir + '/seresnet50_sars' + '.mat', dic)
if __name__ == '__main__':
main()