-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibrosa_cqt_scipy_resample.py
761 lines (638 loc) · 27.9 KB
/
librosa_cqt_scipy_resample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''Constant-Q transforms'''
# NOTE [matt.c.mccallum 08.20.18]: This file is a patch on the librosa library that may be used
# in place of librosa's CQT functionality. The only change here is to allow the use of the scipy
# resampling code, as resampy has issues working on at least some Amazon EC2 instances.
from __future__ import division
import warnings
import numpy as np
import scipy.fftpack as fft
from numba import jit
from librosa.core import audio
from librosa.core.time_frequency import cqt_frequencies, note_to_hz
from librosa.core.spectrum import stft
from librosa.core.pitch import estimate_tuning
from librosa import cache
from librosa import filters
from librosa import util
from librosa.util.exceptions import ParameterError
__all__ = ['cqt', 'hybrid_cqt', 'pseudo_cqt', 'icqt']
@cache(level=20)
def cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84,
bins_per_octave=12, tuning=0.0, filter_scale=1,
norm=1, sparsity=0.01, window='hann',
scale=True,
pad_mode='reflect',
res_type='scipy'):
'''Compute the constant-Q transform of an audio signal.
This implementation is based on the recursive sub-sampling method
described by [1]_.
.. [1] Schoerkhuber, Christian, and Anssi Klapuri.
"Constant-Q transform toolbox for music processing."
7th Sound and Music Computing Conference, Barcelona, Spain. 2010.
Parameters
----------
y : np.ndarray [shape=(n,)]
audio time series
sr : number > 0 [scalar]
sampling rate of `y`
hop_length : int > 0 [scalar]
number of samples between successive CQT columns.
fmin : float > 0 [scalar]
Minimum frequency. Defaults to C1 ~= 32.70 Hz
n_bins : int > 0 [scalar]
Number of frequency bins, starting at `fmin`
bins_per_octave : int > 0 [scalar]
Number of bins per octave
tuning : None or float in `[-0.5, 0.5)`
Tuning offset in fractions of a bin (cents).
If `None`, tuning will be automatically estimated from the signal.
filter_scale : float > 0
Filter scale factor. Small values (<1) use shorter windows
for improved time resolution.
norm : {inf, -inf, 0, float > 0}
Type of norm to use for basis function normalization.
See `librosa.util.normalize`.
sparsity : float in [0, 1)
Sparsify the CQT basis by discarding up to `sparsity`
fraction of the energy in each basis.
Set `sparsity=0` to disable sparsification.
window : str, tuple, number, or function
Window specification for the basis filters.
See `filters.get_window` for details.
scale : bool
If `True`, scale the CQT response by square-root the length of
each channel's filter. This is analogous to `norm='ortho'` in FFT.
If `False`, do not scale the CQT. This is analogous to
`norm=None` in FFT.
pad_mode : string
Padding mode for centered frame analysis.
See also: `librosa.core.stft` and `np.pad`.
Returns
-------
CQT : np.ndarray [shape=(n_bins, t), dtype=np.complex or np.float]
Constant-Q value each frequency at each time.
Raises
------
ParameterError
If `hop_length` is not an integer multiple of
`2**(n_bins / bins_per_octave)`
Or if `y` is too short to support the frequency range of the CQT.
See Also
--------
librosa.core.resample
librosa.util.normalize
Notes
-----
This function caches at level 20.
Examples
--------
Generate and plot a constant-Q power spectrum
>>> import matplotlib.pyplot as plt
>>> y, sr = librosa.load(librosa.util.example_audio_file())
>>> C = np.abs(librosa.cqt(y, sr=sr))
>>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max),
... sr=sr, x_axis='time', y_axis='cqt_note')
>>> plt.colorbar(format='%+2.0f dB')
>>> plt.title('Constant-Q power spectrum')
>>> plt.tight_layout()
Limit the frequency range
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
... n_bins=60))
>>> C
array([[ 8.827e-04, 9.293e-04, ..., 3.133e-07, 2.942e-07],
[ 1.076e-03, 1.068e-03, ..., 1.153e-06, 1.148e-06],
...,
[ 1.042e-07, 4.087e-07, ..., 1.612e-07, 1.928e-07],
[ 2.363e-07, 5.329e-07, ..., 1.294e-07, 1.611e-07]])
Using a higher frequency resolution
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
... n_bins=60 * 2, bins_per_octave=12 * 2))
>>> C
array([[ 1.536e-05, 5.848e-05, ..., 3.241e-07, 2.453e-07],
[ 1.856e-03, 1.854e-03, ..., 2.397e-08, 3.549e-08],
...,
[ 2.034e-07, 4.245e-07, ..., 6.213e-08, 1.463e-07],
[ 4.896e-08, 5.407e-07, ..., 9.176e-08, 1.051e-07]])
'''
# How many octaves are we dealing with?
n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
n_filters = min(bins_per_octave, n_bins)
len_orig = len(y)
if fmin is None:
# C1 by default
fmin = note_to_hz('C1')
if tuning is None:
tuning = estimate_tuning(y=y, sr=sr)
# First thing, get the freqs of the top octave
freqs = cqt_frequencies(n_bins, fmin,
bins_per_octave=bins_per_octave)[-bins_per_octave:]
fmin_t = np.min(freqs)
fmax_t = np.max(freqs)
# Determine required resampling quality
Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1)
filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q)
nyquist = sr / 2.0
y, sr, hop_length = __early_downsample(y, sr, hop_length,
res_type,
n_octaves,
nyquist, filter_cutoff, scale)
cqt_resp = []
if res_type != 'kaiser_fast':
# Do the top octave before resampling to allow for fast resampling
fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t,
n_filters,
bins_per_octave,
tuning,
filter_scale,
norm,
sparsity,
window=window)
# Compute the CQT filter response and append it to the stack
cqt_resp.append(__cqt_response(y, n_fft, hop_length, fft_basis, pad_mode))
fmin_t /= 2
fmax_t /= 2
n_octaves -= 1
filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q)
res_type = 'kaiser_fast'
# Make sure our hop is long enough to support the bottom octave
num_twos = __num_two_factors(hop_length)
if num_twos < n_octaves - 1:
raise ParameterError('hop_length must be a positive integer '
'multiple of 2^{0:d} for {1:d}-octave CQT'
.format(n_octaves - 1, n_octaves))
# Now do the recursive bit
fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t,
n_filters,
bins_per_octave,
tuning,
filter_scale,
norm,
sparsity,
window=window)
my_y, my_sr, my_hop = y, sr, hop_length
# Iterate down the octaves
for i in range(n_octaves):
# Resample (except first time)
if i > 0:
if len(my_y) < 2:
raise ParameterError('Input signal length={} is too short for '
'{:d}-octave CQT'.format(len_orig,
n_octaves))
my_y = audio.resample(my_y, my_sr, my_sr/2.0,
res_type=res_type,
scale=True)
# The re-scale the filters to compensate for downsampling
fft_basis[:] *= np.sqrt(2)
my_sr /= 2.0
my_hop //= 2
# Compute the cqt filter response and append to the stack
cqt_resp.append(__cqt_response(my_y, n_fft, my_hop, fft_basis, pad_mode))
C = __trim_stack(cqt_resp, n_bins)
if scale:
lengths = filters.constant_q_lengths(sr, fmin,
n_bins=n_bins,
bins_per_octave=bins_per_octave,
tuning=tuning,
window=window,
filter_scale=filter_scale)
C /= np.sqrt(lengths[:, np.newaxis])
return C
@cache(level=20)
def hybrid_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84,
bins_per_octave=12, tuning=0.0, filter_scale=1,
norm=1, sparsity=0.01, window='hann', scale=True,
pad_mode='reflect'):
'''Compute the hybrid constant-Q transform of an audio signal.
Here, the hybrid CQT uses the pseudo CQT for higher frequencies where
the hop_length is longer than half the filter length and the full CQT
for lower frequencies.
Parameters
----------
y : np.ndarray [shape=(n,)]
audio time series
sr : number > 0 [scalar]
sampling rate of `y`
hop_length : int > 0 [scalar]
number of samples between successive CQT columns.
fmin : float > 0 [scalar]
Minimum frequency. Defaults to C1 ~= 32.70 Hz
n_bins : int > 0 [scalar]
Number of frequency bins, starting at `fmin`
bins_per_octave : int > 0 [scalar]
Number of bins per octave
tuning : None or float in `[-0.5, 0.5)`
Tuning offset in fractions of a bin (cents).
If `None`, tuning will be automatically estimated from the signal.
filter_scale : float > 0
Filter filter_scale factor. Larger values use longer windows.
sparsity : float in [0, 1)
Sparsify the CQT basis by discarding up to `sparsity`
fraction of the energy in each basis.
Set `sparsity=0` to disable sparsification.
window : str, tuple, number, or function
Window specification for the basis filters.
See `filters.get_window` for details.
pad_mode : string
Padding mode for centered frame analysis.
See also: `librosa.core.stft` and `np.pad`.
Returns
-------
CQT : np.ndarray [shape=(n_bins, t), dtype=np.float]
Constant-Q energy for each frequency at each time.
Raises
------
ParameterError
If `hop_length` is not an integer multiple of
`2**(n_bins / bins_per_octave)`
Or if `y` is too short to support the frequency range of the CQT.
See Also
--------
cqt
pseudo_cqt
Notes
-----
This function caches at level 20.
'''
if fmin is None:
# C1 by default
fmin = note_to_hz('C1')
if tuning is None:
tuning = estimate_tuning(y=y, sr=sr)
# Get all CQT frequencies
freqs = cqt_frequencies(n_bins, fmin,
bins_per_octave=bins_per_octave,
tuning=tuning)
# Compute the length of each constant-Q basis function
lengths = filters.constant_q_lengths(sr, fmin,
n_bins=n_bins,
bins_per_octave=bins_per_octave,
tuning=tuning,
filter_scale=filter_scale,
window=window)
# Determine which filters to use with Pseudo CQT
# These are the ones that fit within 2 hop lengths after padding
pseudo_filters = 2.0**np.ceil(np.log2(lengths)) < 2 * hop_length
n_bins_pseudo = int(np.sum(pseudo_filters))
n_bins_full = n_bins - n_bins_pseudo
cqt_resp = []
if n_bins_pseudo > 0:
fmin_pseudo = np.min(freqs[pseudo_filters])
cqt_resp.append(pseudo_cqt(y, sr,
hop_length=hop_length,
fmin=fmin_pseudo,
n_bins=n_bins_pseudo,
bins_per_octave=bins_per_octave,
tuning=tuning,
filter_scale=filter_scale,
norm=norm,
sparsity=sparsity,
window=window,
scale=scale,
pad_mode=pad_mode))
if n_bins_full > 0:
cqt_resp.append(np.abs(cqt(y, sr,
hop_length=hop_length,
fmin=fmin,
n_bins=n_bins_full,
bins_per_octave=bins_per_octave,
tuning=tuning,
filter_scale=filter_scale,
norm=norm,
sparsity=sparsity,
window=window,
scale=scale,
pad_mode=pad_mode)))
return __trim_stack(cqt_resp, n_bins)
@cache(level=20)
def pseudo_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84,
bins_per_octave=12, tuning=0.0, filter_scale=1,
norm=1, sparsity=0.01, window='hann', scale=True,
pad_mode='reflect'):
'''Compute the pseudo constant-Q transform of an audio signal.
This uses a single fft size that is the smallest power of 2 that is greater
than or equal to the max of:
1. The longest CQT filter
2. 2x the hop_length
Parameters
----------
y : np.ndarray [shape=(n,)]
audio time series
sr : number > 0 [scalar]
sampling rate of `y`
hop_length : int > 0 [scalar]
number of samples between successive CQT columns.
fmin : float > 0 [scalar]
Minimum frequency. Defaults to C1 ~= 32.70 Hz
n_bins : int > 0 [scalar]
Number of frequency bins, starting at `fmin`
bins_per_octave : int > 0 [scalar]
Number of bins per octave
tuning : None or float in `[-0.5, 0.5)`
Tuning offset in fractions of a bin (cents).
If `None`, tuning will be automatically estimated from the signal.
filter_scale : float > 0
Filter filter_scale factor. Larger values use longer windows.
sparsity : float in [0, 1)
Sparsify the CQT basis by discarding up to `sparsity`
fraction of the energy in each basis.
Set `sparsity=0` to disable sparsification.
window : str, tuple, number, or function
Window specification for the basis filters.
See `filters.get_window` for details.
pad_mode : string
Padding mode for centered frame analysis.
See also: `librosa.core.stft` and `np.pad`.
Returns
-------
CQT : np.ndarray [shape=(n_bins, t), dtype=np.float]
Pseudo Constant-Q energy for each frequency at each time.
Raises
------
ParameterError
If `hop_length` is not an integer multiple of
`2**(n_bins / bins_per_octave)`
Or if `y` is too short to support the frequency range of the CQT.
Notes
-----
This function caches at level 20.
'''
if fmin is None:
# C1 by default
fmin = note_to_hz('C1')
if tuning is None:
tuning = estimate_tuning(y=y, sr=sr)
fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin, n_bins,
bins_per_octave,
tuning, filter_scale,
norm, sparsity,
hop_length=hop_length,
window=window)
fft_basis = np.abs(fft_basis)
# Compute the magnitude STFT with Hann window
D = np.abs(stft(y, n_fft=n_fft, hop_length=hop_length, pad_mode=pad_mode))
# Project onto the pseudo-cqt basis
C = fft_basis.dot(D)
if scale:
C /= np.sqrt(n_fft)
else:
lengths = filters.constant_q_lengths(sr, fmin,
n_bins=n_bins,
bins_per_octave=bins_per_octave,
tuning=tuning,
window=window,
filter_scale=filter_scale)
C *= np.sqrt(lengths[:, np.newaxis] / n_fft)
return C
@cache(level=40)
def icqt(C, sr=22050, hop_length=512, fmin=None,
bins_per_octave=12,
tuning=0.0,
filter_scale=1,
norm=1,
sparsity=0.01,
window='hann',
scale=True,
amin=1e-6):
'''Compute the inverse constant-Q transform.
Given a constant-Q transform representation `C` of an audio signal `y`,
this function produces an approximation `y_hat`.
.. warning:: This implementation is unstable, and subject to change in
future versions of librosa. We recommend that its use be
limited to sonification and diagnostic applications.
Parameters
----------
C : np.ndarray, [shape=(n_bins, n_frames)]
Constant-Q representation as produced by `core.cqt`
hop_length : int > 0 [scalar]
number of samples between successive frames
fmin : float > 0 [scalar]
Minimum frequency. Defaults to C1 ~= 32.70 Hz
tuning : float in `[-0.5, 0.5)` [scalar]
Tuning offset in fractions of a bin (cents).
filter_scale : float > 0 [scalar]
Filter scale factor. Small values (<1) use shorter windows
for improved time resolution.
norm : {inf, -inf, 0, float > 0}
Type of norm to use for basis function normalization.
See `librosa.util.normalize`.
sparsity : float in [0, 1)
Sparsify the CQT basis by discarding up to `sparsity`
fraction of the energy in each basis.
Set `sparsity=0` to disable sparsification.
window : str, tuple, number, or function
Window specification for the basis filters.
See `filters.get_window` for details.
scale : bool
If `True`, scale the CQT response by square-root the length
of each channel's filter. This is analogous to `norm='ortho'` in FFT.
If `False`, do not scale the CQT. This is analogous to `norm=None`
in FFT.
amin : float or None
When applying squared window normalization, sample positions with
coefficients below `amin` will left as is.
If `None`, then `amin` is inferred as the smallest valid floating
point value.
Returns
-------
y : np.ndarray, [shape=(n_samples), dtype=np.float]
Audio time-series reconstructed from the CQT representation.
See Also
--------
cqt
Notes
-----
This function caches at level 40.
Examples
--------
Using default parameters
>>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15)
>>> C = librosa.cqt(y=y, sr=sr)
>>> y_hat = librosa.icqt(C=C, sr=sr)
Or with a different hop length and frequency resolution:
>>> hop_length = 256
>>> bins_per_octave = 12 * 3
>>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave,
... bins_per_octave=bins_per_octave)
>>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length,
... bins_per_octave=bins_per_octave)
'''
warnings.warn('librosa.icqt is unstable, and subject to change in future versions. '
'Please use with caution.')
n_bins, n_frames = C.shape
n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
if amin is None:
amin = util.tiny(C)
if fmin is None:
fmin = note_to_hz('C1')
freqs = cqt_frequencies(n_bins,
fmin,
bins_per_octave=bins_per_octave,
tuning=tuning)[-bins_per_octave:]
fmin_t = np.min(freqs)
# Make the filter bank
basis, lengths = filters.constant_q(sr=sr,
fmin=fmin_t,
n_bins=bins_per_octave,
bins_per_octave=bins_per_octave,
filter_scale=filter_scale,
tuning=tuning,
norm=norm,
window=window,
pad_fft=True)
n_fft = basis.shape[1]
# The extra factor of lengths**0.5 corrects for within-octave tapering
basis = basis * np.sqrt(lengths[:, np.newaxis])
# Estimate the gain per filter
bdot = basis.conj().dot(basis.T)
bscale = np.sum(np.abs(bdot), axis=1)
n_trim = basis.shape[1] // 2
if scale:
Cnorm = np.ones(n_bins)[:, np.newaxis]
else:
Cnorm = filters.constant_q_lengths(sr=sr,
fmin=fmin,
n_bins=n_bins,
bins_per_octave=bins_per_octave,
filter_scale=filter_scale,
tuning=tuning,
window=window)[:, np.newaxis]**0.5
y = None
# Revised algorithm:
# for each octave
# upsample old octave
# @--numba accelerate this loop?
# for each basis
# convolve with activation (valid-mode)
# divide by window sumsquare
# trim and add to total
for octave in range(n_octaves - 1, -1, -1):
# Compute the slice index for the current octave
slice_ = slice(-(octave+1) * bins_per_octave - 1,
-(octave) * bins_per_octave - 1)
# Project onto the basis
C_oct = C[slice_] / Cnorm[slice_]
basis_oct = basis[-C_oct.shape[0]:]
y_oct = None
# Make a dummy activation
oct_hop = hop_length // 2**octave
n = n_fft + (C_oct.shape[1] - 1) * oct_hop
for i in range(basis_oct.shape[0]-1, -1, -1):
wss = filters.window_sumsquare(window,
n_frames,
hop_length=oct_hop,
win_length=int(lengths[i]),
n_fft=n_fft,
norm=norm)
wss *= lengths[i]**2
# Construct the response for this filter
y_oct_i = np.zeros(n, dtype=C_oct.dtype)
__activation_fill(y_oct_i, basis_oct[i], C_oct[i], oct_hop)
# Retain only the real part
# Only do window normalization for sufficiently large window
# coefficients
y_oct_i = y_oct_i.real / np.maximum(amin, wss)
if y_oct is None:
y_oct = y_oct_i
else:
y_oct += y_oct_i
# Remove the effects of zero-padding
y_oct = y_oct[n_trim:-n_trim] * bscale[i]
if y is None:
y = y_oct
else:
# Up-sample the previous buffer and add in the new one
# Scipy-resampling is fast here, since it's a power-of-two relation
y = audio.resample(y, 1, 2, scale=True, res_type='scipy') + y_oct
return y
@cache(level=10)
def __cqt_filter_fft(sr, fmin, n_bins, bins_per_octave, tuning,
filter_scale, norm, sparsity, hop_length=None,
window='hann'):
'''Generate the frequency domain constant-Q filter basis.'''
basis, lengths = filters.constant_q(sr,
fmin=fmin,
n_bins=n_bins,
bins_per_octave=bins_per_octave,
tuning=tuning,
filter_scale=filter_scale,
norm=norm,
pad_fft=True,
window=window)
# Filters are padded up to the nearest integral power of 2
n_fft = basis.shape[1]
if (hop_length is not None and
n_fft < 2.0**(1 + np.ceil(np.log2(hop_length)))):
n_fft = int(2.0 ** (1 + np.ceil(np.log2(hop_length))))
# re-normalize bases with respect to the FFT window length
basis *= lengths[:, np.newaxis] / float(n_fft)
# FFT and retain only the non-negative frequencies
fft_basis = fft.fft(basis, n=n_fft, axis=1)[:, :(n_fft // 2)+1]
# sparsify the basis
fft_basis = util.sparsify_rows(fft_basis, quantile=sparsity)
return fft_basis, n_fft, lengths
def __trim_stack(cqt_resp, n_bins):
'''Helper function to trim and stack a collection of CQT responses'''
# cleanup any framing errors at the boundaries
max_col = min(x.shape[1] for x in cqt_resp)
cqt_resp = np.vstack([x[:, :max_col] for x in cqt_resp][::-1])
# Finally, clip out any bottom frequencies that we don't really want
# Transpose magic here to ensure column-contiguity
return np.ascontiguousarray(cqt_resp[-n_bins:].T).T
def __cqt_response(y, n_fft, hop_length, fft_basis, mode):
'''Compute the filter response with a target STFT hop.'''
# Compute the STFT matrix
D = stft(y, n_fft=n_fft, hop_length=hop_length,
window='ones',
pad_mode=mode)
# And filter response energy
return fft_basis.dot(D)
def __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves):
'''Compute the number of early downsampling operations'''
downsample_count1 = max(0, int(np.ceil(np.log2(audio.BW_FASTEST * nyquist /
filter_cutoff)) - 1) - 1)
num_twos = __num_two_factors(hop_length)
downsample_count2 = max(0, num_twos - n_octaves + 1)
return min(downsample_count1, downsample_count2)
def __early_downsample(y, sr, hop_length, res_type, n_octaves,
nyquist, filter_cutoff, scale):
'''Perform early downsampling on an audio signal, if it applies.'''
downsample_count = __early_downsample_count(nyquist, filter_cutoff,
hop_length, n_octaves)
if downsample_count > 0 and res_type == 'kaiser_fast':
downsample_factor = 2**(downsample_count)
hop_length //= downsample_factor
if len(y) < downsample_factor:
raise ParameterError('Input signal length={:d} is too short for '
'{:d}-octave CQT'.format(len(y), n_octaves))
new_sr = sr / float(downsample_factor)
y = audio.resample(y, sr, new_sr,
res_type=res_type,
scale=True)
# If we're not going to length-scale after CQT, we
# need to compensate for the downsampling factor here
if not scale:
y *= np.sqrt(downsample_factor)
sr = new_sr
return y, sr, hop_length
def __num_two_factors(x):
"""Return how many times integer x can be evenly divided by 2.
Returns 0 for non-positive integers.
"""
if x <= 0:
return 0
num_twos = 0
while x % 2 == 0:
num_twos += 1
x //= 2
return num_twos
@jit(nopython=True)
def __activation_fill(x, basis, activation, hop_length): # pragma: no cover
'''Helper function for icqt time-domain reconstruction'''
n = len(x)
n_fft = len(basis)
n_frames = len(activation)
for i in range(n_frames):
sample = i * hop_length
x[sample:min(n, sample + n_fft)] += activation[i] * basis[:max(0, min(n_fft, n - sample))]