-
Notifications
You must be signed in to change notification settings - Fork 5
/
engine_for_finetuning.py
executable file
·232 lines (188 loc) · 8.7 KB
/
engine_for_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import numpy as np
import math
import sys
import time
import datetime
import logging
from typing import Iterable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
import utils
from alphaction.modeling.utils import cat
from alphaction.structures.bounding_box import BoxList
from data.ava_eval import do_ava_evaluation
def train_class_batch(model, samples, boxes):
outputs = model(samples, boxes)
labels = cat([proposal.get_field("labels") for proposal in boxes], dim=0) # [n,80]
assert outputs.shape[1] == labels.shape[1], \
"The shape of tensor class logits doesn't match the label tensor."
# loss = criterion(outputs, target)
batch_size = outputs.shape[0]
loss = F.binary_cross_entropy_with_logits(outputs, labels.to(dtype=torch.float32), reduction='mean')
loss = loss * batch_size
return loss, outputs
def get_loss_scale_for_deepspeed(model):
optimizer = model.optimizer
return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None,
start_steps=None, lr_schedule_values=None, wd_schedule_values=None,
num_training_steps_per_epoch=None, update_freq=None):
model.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for step, (samples, boxes, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if step >= num_training_steps_per_epoch:
continue
it = start_steps + step # global training iteration
# Update LR & WD for the first acc
if lr_schedule_values is not None or wd_schedule_values is not None:
# if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
samples = samples.to(device, non_blocking=True)
boxes = [box.to(device=device) for box in boxes] # boxlist
# targets = targets.to(device, non_blocking=True)
# if mixup_fn is not None:
# samples, targets = mixup_fn(samples, targets)
if loss_scaler is None:
samples = samples.half()
loss, _ = train_class_batch(
model, samples, boxes)
else:
with torch.cuda.amp.autocast():
loss, _ = train_class_batch(
model, samples, boxes)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
log_writer.update(loss_scale=loss_scale_value, head="opt")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.set_step()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
class PostProcessor(nn.Module):
def forward(self, class_logits, boxes):
# boxes should be (#detections,4)
# prob should be calculated in different way.
class_logits = torch.sigmoid(class_logits) # [n,80]
# 给action_prob乘以box分数
box_scores = cat([box.get_field("scores") for box in boxes], dim=0)
box_scores = box_scores.reshape(class_logits.shape[0], 1) # [B,1]
action_prob = class_logits * box_scores
image_shapes = [box.size for box in boxes]
boxes_per_image = [len(box) for box in boxes]
box_tensors = [a.bbox for a in boxes]
action_prob = action_prob.split(boxes_per_image, dim=0) # [rois,80]->[bs,per_roi,80]
results = []
for prob, boxes_per_image, image_shape in zip(
action_prob, box_tensors, image_shapes
):
boxlist = self.prepare_boxlist(boxes_per_image, prob, image_shape)
results.append(boxlist)
return results
def prepare_boxlist(self, boxes, scores, image_shape):
boxlist = BoxList(boxes, image_shape, mode="xyxy")
boxlist.add_field("scores", scores)
return boxlist
@torch.no_grad()
def validation_one_epoch(data_loader, model, device, output_dir, epoch, log_writer=None):
if not utils.is_main_process():
return
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Val:'
# switch to evaluation mode
model.eval()
logging.info("Start evaluation on ava_v2.2 dataset({} videos).".format(data_loader.num_samples))
start_time = time.time()
cpu_device = torch.device("cpu")
results_dict = {}
postprocess = PostProcessor()
for batch in metric_logger.log_every(data_loader, 10, header):
videos = batch[0]
boxes = batch[1]
video_ids = batch[2]
videos = videos.to(device, non_blocking=True)
boxes = [box.to(device=device) for box in boxes] # boxlist
# target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(videos, boxes) # [n,80]
output = postprocess(output, boxes)
output = [o.to(cpu_device) for o in output]
results_dict.update(
{video_id: result for video_id, result in zip(video_ids, output)}
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
logging.info(
"Total inference time: {}".format(total_time_str)
)
# convert a dict where the key is the index in a list
video_ids = list(sorted(results_dict.keys()))
if len(video_ids) != video_ids[-1] + 1:
logging.warning(
"Number of videos that were gathered from multiple processes is not "
"a contiguous set. Some images might be missing from the evaluation"
)
# convert to a list
predictions = [results_dict[i] for i in video_ids]
logging.info("Performing ava evaluation")
output_folder = os.path.join(output_dir, "inference")
os.makedirs(output_folder, exist_ok=True)
eval_res = do_ava_evaluation(
dataset=data_loader.dataset,
predictions=predictions,
output_folder=output_folder,
)
if log_writer is not None:
eval_res, _ = eval_res
total_mAP = eval_res['PascalBoxes_Precision/[email protected]']
log_writer.update(map=total_mAP, head="perf", step=epoch)