To be continued...
Backbone | K | Modality | Flip | FrameAP @0.5 | VideoAP @0.2 | @0.5 | @0.75 | 0.5:0.95 | FPS | Download |
---|---|---|---|---|---|---|---|
DLA-34 | 7 | RGB | ✓ | 73.14 | 78.81 | 51.02 | 27.05 | 26.51 | 29 | model |
✗ | 72.05 | 78.23 | 50.77 | 26.10 | 26.16 | 53 | ⬆️ | |||
ResNet-18 | 7 | RGB | ✓ | 70.36 | 76.31 | 50.03 | 25.66 | 25.72 | 50 | model |
✗ | 68.63 | 76.70 | 49.31 | 24.63 | 25.11 | 85 | ⬆️ |
(All experiments validate on UCF101-24 test split with coco pretrain)
Online FPS tests on a single NVIDIA TITAN XP with --batch_size 1
.
Firstly, download coco pretrained ResNet-18 model from this.
We get this pretrained model from Centernet, which adds three up-convolutional layers to obtain a higher-resolution output.
Please move this pretrained model to ${MOC_ROOT}/experiment/modelzoo
Then, run
python3 train.py --K 7 --exp_id Train_K7_rgb_coco_resnet18 --rgb_model $PATH_TO_SAVE_MODEL --batch_size 128 --master_batch 16 --lr 5e-4 --gpus 0,1,2,3,4,5,6,7 --num_workers 16 --num_epochs 10 --lr_step 5,8 --save_all --arch resnet_18
Don't forget to add --arch resnet_18
.
Download our result model from this. Then run:
python3 det.py --task normal --K 7 --gpus 0,1,2,3,4,5,6,7 --batch_size 128 --master_batch 16 --num_workers 16 --rgb_model ../experiment/result_model/$PATH_TO_RGB_MODEL --inference_dir $INFERENCE_DIR --flip_test --arch resnet_18
python3 det.py --task normal --K 7 --gpus 0 --batch_size 1 --master_batch 1 --num_workers 0 --rgb_model ../experiment/result_model/$PATH_TO_RGB_MODEL --inference_dir $INFERENCE_DIR --flip_test --arch resnet_18
python3 ACT.py --task frameAP --K 7 --th 0.5 --inference_dir $INFERENCE_DIR
python3 ACT.py --task BuildTubes --K 7 --inference_dir $INFERENCE_DIR
python3 ACT.py --task videoAP --K 7 --th 0.2 --inference_dir $INFERENCE_DIR
python3 ACT.py --task videoAP --K 7 --th 0.5 --inference_dir $INFERENCE_DIR
python3 ACT.py --task videoAP --K 7 --th 0.75 --inference_dir $INFERENCE_DIR
python3 ACT.py --task videoAP_all --K 7 --inference_dir $INFERENCE_DIR
Don't forget to add --arch resnet_18
.
We also provide bash file for training. Please refer train_ucf_k7_resnet18.sh.