-
Notifications
You must be signed in to change notification settings - Fork 13
/
dataset.py
executable file
·117 lines (104 loc) · 3.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from datasets.ucf101 import UcfHmdb
from datasets.instagram import Instagram
def get_training_set(opt):
assert opt.dataset in ['ucf101', 'hmdb51', 'ins']
if opt.dataset == 'ucf101':
training_data = UcfHmdb(
'UCF101',
opt.video_path,
opt.dataset_file,
'training',
testing=False,
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
n_samples_for_each_video=1,
n_samples_for_each_frame=1,
crop_size=opt.sample_size)
elif opt.dataset == 'hmdb51':
training_data = UcfHmdb(
'HMDB51',
opt.video_path,
opt.dataset_file,
'training',
testing=False,
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
n_samples_for_each_video=1,
n_samples_for_each_frame=1,
crop_size=opt.sample_size)
elif opt.dataset == 'ins':
training_data = Instagram(
opt.video_path,
opt.dataset_file,
'training',
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
crop_size=opt.sample_size)
return training_data
def get_validation_set(opt):
assert opt.dataset in ['ucf101', 'hmdb51', 'ins']
if opt.dataset == 'ucf101':
validation_data = UcfHmdb(
'UCF101',
opt.video_path,
opt.dataset_file,
'validation',
testing=False,
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
n_samples_for_each_video=1,
n_samples_for_each_frame=1,
crop_size=opt.sample_size)
elif opt.dataset == 'hmdb51':
validation_data = UcfHmdb(
'HMDB51',
opt.video_path,
opt.dataset_file,
'validation',
testing=False,
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
n_samples_for_each_video=1,
n_samples_for_each_frame=1,
crop_size=opt.sample_size)
elif opt.dataset == 'ins':
validation_data = Instagram(
opt.video_path,
opt.dataset_file,
'validation',
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
crop_size=opt.sample_size)
return validation_data
def get_test_set(opt):
assert opt.dataset in ['ucf101', 'hmdb51']
assert opt.test_subset in ['val', 'test']
if opt.test_subset == 'val':
subset = 'validation'
elif opt.test_subset == 'test':
subset = 'testing'
if opt.dataset == 'ucf101':
test_data = UcfHmdb(
'UCF101',
opt.video_path,
opt.dataset_file,
subset,
testing=True,
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
n_samples_for_each_video=10,
n_samples_for_each_frame=3,
crop_size=opt.sample_size)
elif opt.dataset == 'hmdb51':
test_data = UcfHmdb(
'HMDB51',
opt.video_path,
opt.dataset_file,
subset,
testing=True,
num_frames=opt.sample_duration // opt.stride_size,
sample_stride=opt.stride_size,
n_samples_for_each_video=10,
n_samples_for_each_frame=3,
crop_size=opt.sample_size)
return test_data