-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_test_surface_normal.py
executable file
·213 lines (176 loc) · 10.6 KB
/
train_test_surface_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import numpy as np
import argparse
import os
from data import create_dataset_loader, data_augmentation
from losses import compute_surface_normal_angle_error
from model import create_network, forward_cnn
from utils import log, log_normal_stats, check_nan_ckpt
from warping_2dof_alignment import Warping2DOFAlignment
def parsing_configurations():
parser = argparse.ArgumentParser(description='Train/Test surface normal estimation')
parser.add_argument('--log_folder', type=str, default='')
parser.add_argument('--operation', type=str, default='evaluate')
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--checkpoint_path', type=str, default='')
parser.add_argument('--rectified_checkpoint_path', type=str, default='')
parser.add_argument('--sr_checkpoint_path', type=str, default='./checkpoints/SR_only.ckpt')
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--train_dataset', type=str, default='./data/scannet_standard_train_test_val_split.pkl')
parser.add_argument('--test_dataset', type=str, default='./data/scannet_standard_train_test_val_split.pkl')
parser.add_argument('--net_architecture', type=str, default='dorn')
parser.add_argument('--optimizer', type=str, default='adam')
parser.add_argument('--augmentation', type=str, default='')
parser.add_argument('--max_epoch', type=int, default=20)
parser.add_argument('--print_every_x_iterations', type=int, default=60)
parser.add_argument('--evaluate_every_x_iterations', type=int, default=600)
parser.add_argument('--save_ckpt_every_x_iterations', type=int, default=6000)
args = parser.parse_args()
config = {'ARCHITECTURE': args.net_architecture,
'AUGMENTATION': args.augmentation,
'BATCH_SIZE': args.batch_size,
'CKPT_PATH': args.checkpoint_path,
'EVAL_ITER': args.evaluate_every_x_iterations,
'LEARNING_RATE': args.learning_rate,
'LOG_FOLDER': args.log_folder,
'MAX_EPOCH': args.max_epoch,
'PRINT_ITER': args.print_every_x_iterations,
'OPERATION': args.operation,
'OPTIMIZER': args.optimizer,
'RECTIFIED_CKPT_PATH': args.rectified_checkpoint_path,
'SAVE_ITER': args.save_ckpt_every_x_iterations,
'SR_CKPT_PATH': args.sr_checkpoint_path,
'TRAIN_DATASET': args.train_dataset,
'TEST_DATASET': args.test_dataset}
return config
total_normal_errors = None
def accumulate_prediction_error(sample_batched, angle_error_prediction):
global total_normal_errors
mask = sample_batched['mask'] > 0
if total_normal_errors is None:
total_normal_errors = angle_error_prediction[mask].data.cpu().numpy()
else:
total_normal_errors = np.concatenate((total_normal_errors, angle_error_prediction[mask].data.cpu().numpy()))
if __name__ == '__main__':
# Step 1. Configuration file
config = parsing_configurations()
# Create logger file
training_loss_file = None
evaluate_stat_file = None
if config['LOG_FOLDER'] != '':
if not os.path.exists(config['LOG_FOLDER']):
os.makedirs(config['LOG_FOLDER'])
training_loss_file = open(config['LOG_FOLDER'] + '/training_loss.txt', 'w')
evaluate_stat_file = open(config['LOG_FOLDER'] + '/evaluate_stat.txt', 'w')
log(config, training_loss_file)
log(config, evaluate_stat_file)
# Step 2. Create dataset loader
train_dataloader, test_dataloader, val_dataloader = create_dataset_loader(config)
# Step 3. Create cnn
cnn = create_network(config)
if config['CKPT_PATH'] is not '':
print('Loading checkpoint from %s' % config['CKPT_PATH'])
cnn.load_state_dict(torch.load(config['CKPT_PATH']))
# Step 4. Create optimizer
optimizer = None
if 'train' in config['OPERATION']:
if config['OPTIMIZER'] == 'adam':
optimizer = torch.optim.Adam(cnn.parameters(), lr=config['LEARNING_RATE'], betas=(0.9, 0.999))
else:
raise Exception('Optimizer not implemented!')
# Step 5. Create warper input:
warper = Warping2DOFAlignment()
# Step 6. Learning loop
best_median_error = None
if 'train' in config['OPERATION']:
for epoch in range(0, config['MAX_EPOCH']):
for iter, sample_batched in enumerate(train_dataloader):
cnn.train()
for data_key, data_value in sample_batched.items():
if torch.is_tensor(data_value):
sample_batched[data_key] = sample_batched[data_key].cuda()
if config['AUGMENTATION'] != '' and sample_batched['ga_split'] != 'no_ga':
sample_batched = data_augmentation(sample_batched, config, warper, epoch, iter)
# zero the parameter gradients
optimizer.zero_grad()
# Step 6b: Forward pass
output_prediction = forward_cnn(sample_batched, cnn, config)
# Step 6c: Compute loss
losses, logging_losses = compute_surface_normal_angle_error(sample_batched,
output_prediction,
mode=config['OPERATION'],
angle_type='delta')
# Step 6d: Backward pass and update
losses.backward()
optimizer.step()
# Step 6e. Print loss value
if iter % config['PRINT_ITER'] == 0:
log('Epoch %d, Iter %d, Loss %.4f' % (epoch, iter, logging_losses), training_loss_file)
# Step 6f. Print robust evaluation stats
if iter % config['EVAL_ITER'] == 0 and config['OPERATION'] != 'train_SR_only':
# Reload closest checkpoint if hit nan
if check_nan_ckpt(cnn):
cnn.load_state_dict(torch.load(config['LOG_FOLDER'] + '/model-latest.ckpt'))
optimizer.load_state_dict(
torch.load(config['LOG_FOLDER'] + '/optimizer-latest.ckpt'))
log('Getting Nan, reloading model from last checkpoint', training_loss_file)
evaluation_mode = 'evaluate' + config['OPERATION'][len('train'):] if 'mix_loss' in config['OPERATION'] else 'evaluate'
total_normal_errors = None
with torch.no_grad():
print('<EVALUATION MODE:', evaluation_mode, '>')
cnn.eval()
for _, eval_batch in enumerate(test_dataloader):
# push to cuda
for data_key, data_value in eval_batch.items():
if torch.is_tensor(data_value):
eval_batch[data_key] = eval_batch[data_key].cuda()
if config['AUGMENTATION'] == 'warp_input':
eval_batch = data_augmentation(eval_batch, config, warper, epoch, iter)
output_prediction = forward_cnn(eval_batch, cnn, config)
if 'sr' in config['ARCHITECTURE']:
surfacenormal_pred = output_prediction['n']
else:
surfacenormal_pred = output_prediction
angle_error_prediction = compute_surface_normal_angle_error(eval_batch,
surfacenormal_pred,
mode=evaluation_mode,
angle_type='delta')
accumulate_prediction_error(eval_batch, angle_error_prediction)
log_normal_stats(epoch, iter, total_normal_errors, evaluate_stat_file)
# save the best checkpoint (except train_SR_only as we don't evaluate it)
current_median_error = np.median(total_normal_errors)
if config['OPERATION'] != 'train_SR_only':
if best_median_error is None:
best_median_error = current_median_error
log('Best median error in validation: %f, saving checkpoint epoch %d, iter %d' % (
best_median_error, epoch, iter))
path = config['LOG_FOLDER'] + '/model-best.ckpt'
torch.save(cnn.state_dict(), path)
else:
if current_median_error < best_median_error:
best_median_error = current_median_error
log('Best median error in validation: %f, saving the best checkpoint, epoch %d, iter %d' % (
best_median_error, epoch, iter))
path = config['LOG_FOLDER'] + '/model-best.ckpt'
torch.save(cnn.state_dict(), path)
# Step 6g. Save checkpoints into file
if iter % config['SAVE_ITER'] == 0:
# save the latest checkpoint
log('Saving the latest checkpoint (not necessarily the best), epoch %d, iter %d' % (epoch, iter))
path = config['LOG_FOLDER'] + '/model-latest.ckpt'
torch.save(cnn.state_dict(), path)
path = config['LOG_FOLDER'] + '/optimizer-latest.ckpt'
torch.save(optimizer.state_dict(), path)
else:
cnn.eval()
total_normal_errors = None
with torch.no_grad():
for iter, sample_batched in enumerate(test_dataloader):
sample_batched = {data_key:sample_batched[data_key].cuda() for data_key in sample_batched}
output_prediction = forward_cnn(sample_batched, cnn, config)
angle_error_prediction = compute_surface_normal_angle_error(sample_batched, output_prediction,
mode=config['OPERATION'], angle_type='delta')
accumulate_prediction_error(sample_batched, angle_error_prediction)
# TOTAL error
print('NORMAL ERROR STATS: ')
log_normal_stats(0, 0, total_normal_errors)