This repository has been archived by the owner on Aug 24, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain_CGAN.py
188 lines (155 loc) · 6.67 KB
/
train_CGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import json
import model
import numpy as np
import pylib
import PIL.Image as Image
import tensorboardX
import torch
import torchvision
import torchvision.datasets as dsets
import torchvision.transforms as tforms
import torchlib
# ==============================================================================
# = param =
# ==============================================================================
# command line arguments
parser = argparse.ArgumentParser()
# model
parser.add_argument('--z_dim', dest='z_dim', type=int, default=100)
# training
parser.add_argument('--epoch', dest='epoch', type=int, default=50)
parser.add_argument('--batch_size', dest='batch_size', type=int, default=64)
parser.add_argument('--d_learning_rate', dest='d_learning_rate', type=float, default=0.0002)
parser.add_argument('--g_learning_rate', dest='g_learning_rate', type=float, default=0.001)
parser.add_argument('--n_d', dest='n_d', type=int, help='# of d updates per g update', default=1)
parser.add_argument('--loss_mode', dest='loss_mode', choices=['gan', 'lsgan', 'wgan', 'hinge_v1', 'hinge_v2'], default='hinge_v2')
parser.add_argument('--gp_mode', dest='gp_mode', choices=['none', 'dragan', 'wgan-gp'], default='none')
parser.add_argument('--gp_coef', dest='gp_coef', type=float, default=1.0)
parser.add_argument('--norm', dest='norm', choices=['none', 'batch_norm', 'instance_norm'], default='none')
parser.add_argument('--weight_norm', dest='weight_norm', choices=['none', 'spectral_norm', 'weight_norm'], default='spectral_norm')
# others
parser.add_argument('--experiment_name', dest='experiment_name', default='CGAN_default')
# parse arguments
args = parser.parse_args()
# model
z_dim = args.z_dim
# training
epoch = args.epoch
batch_size = args.batch_size
d_learning_rate = args.d_learning_rate
g_learning_rate = args.g_learning_rate
n_d = args.n_d
loss_mode = args.loss_mode
gp_mode = args.gp_mode
gp_coef = args.gp_coef
norm = args.norm
weight_norm = args.weight_norm
# ohters
experiment_name = args.experiment_name
# save settings
pylib.mkdir('./output/%s' % experiment_name)
with open('./output/%s/setting.txt' % experiment_name, 'w') as f:
f.write(json.dumps(vars(args), indent=4, separators=(',', ':')))
# others
use_gpu = torch.cuda.is_available()
device = torch.device("cuda" if use_gpu else "cpu")
c_dim = 10
# ==============================================================================
# = setting =
# ==============================================================================
# data
transform = tforms.Compose(
[tforms.Scale(size=(32, 32), interpolation=Image.BICUBIC),
tforms.ToTensor(),
tforms.Lambda(lambda x: torch.cat((x, x, x), dim=0)),
tforms.Normalize(mean=[0.5] * 3, std=[0.5] * 3)]
)
train_loader = torch.utils.data.DataLoader(
dataset=dsets.FashionMNIST('data/FashionMNIST', train=True, download=True, transform=transform),
batch_size=batch_size,
shuffle=True,
num_workers=4,
pin_memory=use_gpu,
drop_last=True
)
# model
D = model.DiscriminatorCGAN(x_dim=3, c_dim=c_dim, norm=norm, weight_norm=weight_norm).to(device)
G = model.GeneratorCGAN(z_dim=z_dim, c_dim=c_dim).to(device)
# gan loss function
d_loss_fn, g_loss_fn = model.get_losses_fn(loss_mode)
# optimizer
d_optimizer = torch.optim.Adam(D.parameters(), lr=d_learning_rate, betas=(0.5, 0.999))
g_optimizer = torch.optim.Adam(G.parameters(), lr=g_learning_rate, betas=(0.5, 0.999))
# ==============================================================================
# = train =
# ==============================================================================
# load checkpoint
ckpt_dir = './output/%s/checkpoints' % experiment_name
pylib.mkdir(ckpt_dir)
try:
ckpt = torchlib.load_checkpoint(ckpt_dir)
start_ep = ckpt['epoch']
D.load_state_dict(ckpt['D'])
G.load_state_dict(ckpt['G'])
d_optimizer.load_state_dict(ckpt['d_optimizer'])
g_optimizer.load_state_dict(ckpt['g_optimizer'])
except:
print(' [*] No checkpoint!')
start_ep = 0
# writer
writer = tensorboardX.SummaryWriter('./output/%s/summaries' % experiment_name)
# run
z_sample = torch.randn(c_dim * 10, z_dim).to(device)
c_sample = torch.tensor(np.concatenate([np.eye(c_dim)] * 10), dtype=z_sample.dtype).to(device)
for ep in range(start_ep, epoch):
for i, (x, c_dense) in enumerate(train_loader):
step = ep * len(train_loader) + i + 1
D.train()
G.train()
# train D
x = x.to(device)
z = torch.randn(batch_size, z_dim).to(device)
c = torch.tensor(np.eye(c_dim)[c_dense.cpu().numpy()], dtype=z.dtype).to(device)
x_f = G(z, c).detach()
x_gan_logit = D(x, c)
x_f_gan_logit = D(x_f, c)
d_x_gan_loss, d_x_f_gan_loss = d_loss_fn(x_gan_logit, x_f_gan_logit)
gp = model.gradient_penalty(D, x, x_f, mode=gp_mode)
d_loss = d_x_gan_loss + d_x_f_gan_loss + gp * gp_coef
D.zero_grad()
d_loss.backward()
d_optimizer.step()
writer.add_scalar('D/d_gan_loss', (d_x_gan_loss + d_x_f_gan_loss).data.cpu().numpy(), global_step=step)
writer.add_scalar('D/gp', gp.data.cpu().numpy(), global_step=step)
# train G
if step % n_d == 0:
z = torch.randn(batch_size, z_dim).to(device)
x_f = G(z, c)
x_f_gan_logit = D(x_f, c)
g_gan_loss = g_loss_fn(x_f_gan_logit)
g_loss = g_gan_loss
G.zero_grad()
g_loss.backward()
g_optimizer.step()
writer.add_scalar('G/g_gan_loss', g_gan_loss.data.cpu().numpy(), global_step=step)
# display
if step % 1 == 0:
print("Epoch: (%3d) (%5d/%5d)" % (ep, i + 1, len(train_loader)))
# sample
if step % 100 == 0:
G.eval()
x_f_sample = (G(z_sample, c_sample) + 1) / 2.0
save_dir = './output/%s/sample_training' % experiment_name
pylib.mkdir(save_dir)
torchvision.utils.save_image(x_f_sample, '%s/Epoch_(%d)_(%dof%d).jpg' % (save_dir, ep, i + 1, len(train_loader)), nrow=10)
torchlib.save_checkpoint({'epoch': ep + 1,
'D': D.state_dict(),
'G': G.state_dict(),
'd_optimizer': d_optimizer.state_dict(),
'g_optimizer': g_optimizer.state_dict()},
'%s/Epoch_(%d).ckpt' % (ckpt_dir, ep + 1),
max_keep=2)