We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Bellow you can find a MWE with RNNCell. It is the same for LSTMCell.
RNNCell
LSTMCell
using Lux, Random, CUDA rnn = RNNCell(2 => 8) rng = Random.default_rng() Random.seed!(rng, 0) ps, st = Lux.setup(rng, rnn) .|> gpu x = rand(Float32, 2, 4, 10) |> gpu rnn(view(x, :, 1, :), ps, st)
ERROR: ArgumentError: cannot take the CPU address of a CuArray{Float32, 2, CUDA.Mem.DeviceBuffer} Stacktrace: [1] unsafe_convert(#unused#::Type{Ptr{Float32}}, x::CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}) @ CUDA ~/.julia/packages/CUDA/DfvRa/src/array.jl:319 [2] gemm!(transA::Char, transB::Char, alpha::Float32, A::CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, B::Matrix{Float32}, beta::Float32, C::Matrix{Float32}) @ LinearAlgebra.BLAS /network/scratch/a/abrevayg/julia-1.8.0-rc3/share/julia/stdlib/v1.8/LinearAlgebra/src/blas.jl:1514 [3] gemm_wrapper!(C::Matrix{Float32}, tA::Char, tB::Char, A::CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, B::Matrix{Float32}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}) @ LinearAlgebra /network/scratch/a/abrevayg/julia-1.8.0-rc3/share/julia/stdlib/v1.8/LinearAlgebra/src/matmul.jl:674 [4] mul! @ /network/scratch/a/abrevayg/julia-1.8.0-rc3/share/julia/stdlib/v1.8/LinearAlgebra/src/matmul.jl:161 [inlined] [5] mul! @ /network/scratch/a/abrevayg/julia-1.8.0-rc3/share/julia/stdlib/v1.8/LinearAlgebra/src/matmul.jl:276 [inlined] [6] * @ /network/scratch/a/abrevayg/julia-1.8.0-rc3/share/julia/stdlib/v1.8/LinearAlgebra/src/matmul.jl:148 [inlined] [7] (::RNNCell{true, typeof(tanh), typeof(Lux.zeros32), typeof(Lux.glorot_uniform), typeof(Lux.ones32)})(::Tuple{SubArray{Float32, 2, CuArray{Float32, 3, CUDA.Mem.DeviceBuffer}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64, Base.Slice{Base.OneTo{Int64}}}, false}, Matrix{Float32}}, ps::NamedTuple{(:weight_ih, :weight_hh, :bias), Tuple{CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}}, st::NamedTuple{(:rng,), Tuple{Xoshiro}}) @ Lux ~/.julia/packages/Lux/lEqCI/src/layers/recurrent.jl:81 [8] (::RNNCell{true, typeof(tanh), typeof(Lux.zeros32), typeof(Lux.glorot_uniform), typeof(Lux.ones32)})(x::SubArray{Float32, 2, CuArray{Float32, 3, CUDA.Mem.DeviceBuffer}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64, Base.Slice{Base.OneTo{Int64}}}, false}, ps::NamedTuple{(:weight_ih, :weight_hh, :bias), Tuple{CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}}, st::NamedTuple{(:rng,), Tuple{Xoshiro}}) @ Lux ~/.julia/packages/Lux/lEqCI/src/layers/recurrent.jl:76 [9] top-level scope @ REPL[9]:1 [10] top-level scope @ ~/.julia/packages/CUDA/DfvRa/src/initialization.jl:52
(rnn_gpu_issue) pkg> st Status `/network/scratch/a/abrevayg/rnn_gpu_issue/Project.toml` [052768ef] CUDA v3.12.0 [b2108857] Lux v0.4.9
julia> VERSION v"1.8.0-rc3"
The text was updated successfully, but these errors were encountered:
I really need to setup GPU CI. But this is quite easy to fix, I will patch it soon.
Sorry, something went wrong.
Successfully merging a pull request may close this issue.
Bellow you can find a MWE with
RNNCell
. It is the same forLSTMCell
.The text was updated successfully, but these errors were encountered: