-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_09.py
153 lines (115 loc) · 5.12 KB
/
example_09.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from os.path import dirname, abspath, exists, join
from sys import exit
import cv2
import numpy as np
WINDOW_WIDTH: int = 1152
WINDOW_HEIGHT: int = 720
FPS: int = 30
ARUCO_DICT_ID: int = cv2.aruco.DICT_4X4_50
EXAMPLE_PATH: str = "src/photos/"
def aruco_detector() -> cv2.aruco.ArucoDetector:
"""
Initializes and returns an ArUco detector configured with a predefined
dictionary and default detection parameters.
:return: A configured ArUcoDetector instance ready to detect markers.
:rtype: cv2.aruco.ArucoDetector
"""
aruco_dict = cv2.aruco.getPredefinedDictionary(ARUCO_DICT_ID)
aruco_params = cv2.aruco.DetectorParameters()
aruco_params.cornerRefinementMethod = cv2.aruco.CORNER_REFINE_SUBPIX
return cv2.aruco.ArucoDetector(aruco_dict, aruco_params)
def draw_image_between_markers(img: np.ndarray,
corners_marker_0: np.ndarray,
corners_marker_1: np.ndarray,
overlay_image: np.ndarray) -> np.ndarray:
"""
Draws an overlay image between two markers on a given image using a homography
transformation.
:param img: The target image on which overlay image will be drawn
:type img: np.ndarray
:param corners_marker_0: Corner points of the first marker (marker 0)
:type corners_marker_0: np.ndarray
:param corners_marker_1: Corner points of the second marker (marker 1)
:type corners_marker_1: np.ndarray
:param overlay_image: The overlay image to be drawn between the markers
:type overlay_image: np.ndarray
:return: The image with the overlay drawn between the markers
:rtype: np.ndarray
"""
top_left_corner = corners_marker_0[np.argmin(corners_marker_0.sum(axis=1))]
bottom_right_corner = corners_marker_1[np.argmax(corners_marker_1.sum(axis=1))]
overlay_width = int(np.linalg.norm(top_left_corner[0] - bottom_right_corner[0]))
# overlay_height = int(overlay_width * (overlay_image.shape[0] / overlay_image.shape[1]))
dest_points = np.array([
top_left_corner,
[top_left_corner[0] + overlay_width, top_left_corner[1]],
bottom_right_corner,
[bottom_right_corner[0] - overlay_width, bottom_right_corner[1]]
], dtype=np.float32)
src_points = np.array([
[0, 0],
[overlay_image.shape[1], 0],
[overlay_image.shape[1], overlay_image.shape[0]],
[0, overlay_image.shape[0]]
], dtype=np.float32)
homography_matrix, _ = cv2.findHomography(src_points, dest_points)
if homography_matrix is None:
print("[WARNING] Homography matrix is None. Returning original image.")
return img
warped_overlay = cv2.warpPerspective(overlay_image, homography_matrix, (img.shape[1], img.shape[0]))
if warped_overlay.shape[2] == 4:
alpha_channel = warped_overlay[:, :, 3] / 255.0
rgb_overlay = warped_overlay[:, :, :3]
for c in range(3):
img[:, :, c] = img[:, :, c] * (1 - alpha_channel) + rgb_overlay[:, :, c] * alpha_channel
else:
mask = (warped_overlay > 0).any(axis=2)
img[mask] = warped_overlay[mask]
return img
if __name__ == "__main__":
current_file_path = dirname(abspath(__file__))
example_path = join(current_file_path, EXAMPLE_PATH)
detector = aruco_detector()
image_cache = {}
gray_template = None
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, WINDOW_WIDTH)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, WINDOW_HEIGHT)
cap.set(cv2.CAP_PROP_FPS, FPS)
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
if not cap.isOpened():
print("[ERROR] Error opening video stream.")
exit(1)
else:
print("[INFO] Place ArUco markers in front of the camera.")
print("[INFO] Press 'q' or 'ESC' to quit.")
while True:
ret, frame = cap.read()
if not ret:
break
key = cv2.waitKey(1) & 0xFF
if key == ord('q') or key == 27:
break
if frame is None or frame.size == 0:
print("[WARNING] Empty frame. Skipping...")
continue
if gray_template is None:
gray_template = np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY, dst=gray_template)
corners, ids, _ = detector.detectMarkers(gray_template)
if ids is not None and len(ids) > 1:
marker_id_sum = int(ids[0][0] + ids[1][0])
img_path = join(example_path, f"treasure_{marker_id_sum}.jpg")
if not exists(img_path):
print(f"[ERROR] Image not found: {img_path}")
continue
if marker_id_sum not in image_cache:
print(f"[INFO] Loading image: {img_path}")
image_cache[marker_id_sum] = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
image_capture = image_cache[marker_id_sum]
corners_2 = corners[0][0]
corners_1 = corners[1][0]
frame = draw_image_between_markers(frame, corners_1, corners_2, image_capture)
cv2.imshow("AR Marker Detection: show image on two markers", frame)
cap.release()
cv2.destroyAllWindows()