-
Notifications
You must be signed in to change notification settings - Fork 0
/
reeds_shepp.py
366 lines (270 loc) · 11.1 KB
/
reeds_shepp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
Reeds Shepp path planner sample code
author Atsushi Sakai(@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import numpy as np
class Path:
"""
Path data container
"""
def __init__(self):
# course segment length (negative value is backward segment)
self.lengths = []
# course segment type char ("S": straight, "L": left, "R": right)
self.ctypes = []
self.L = 0.0 # Total lengths of the path
self.x = [] # x positions
self.y = [] # y positions
self.yaw = [] # orientations [rad]
self.directions = [] # directions (1:forward, -1:backward)
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
if isinstance(x, list):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc,
ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
def mod2pi(x):
# Be consistent with fmod in cplusplus here.
v = np.mod(x, np.copysign(2.0 * math.pi, x))
if v < -math.pi:
v += 2.0 * math.pi
else:
if v > math.pi:
v -= 2.0 * math.pi
return v
def straight_left_straight(x, y, phi):
phi = mod2pi(phi)
if y > 0.0 and 0.0 < phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
elif y < 0.0 < phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
return False, 0.0, 0.0, 0.0
def set_path(paths, lengths, ctypes, step_size):
path = Path()
path.ctypes = ctypes
path.lengths = lengths
path.L = sum(np.abs(lengths))
# check same path exist
for i_path in paths:
type_is_same = (i_path.ctypes == path.ctypes)
length_is_close = (sum(np.abs(i_path.lengths)) - path.L) <= step_size
if type_is_same and length_is_close:
return paths # same path found, so do not insert path
# check path is long enough
if path.L <= step_size:
return paths # too short, so do not insert path
paths.append(path)
return paths
def straight_curve_straight(x, y, phi, paths, step_size):
flag, t, u, v = straight_left_straight(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "L", "S"], step_size)
flag, t, u, v = straight_left_straight(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "R", "S"], step_size)
return paths
def polar(x, y):
r = math.sqrt(x ** 2 + y ** 2)
theta = math.atan2(y, x)
return r, theta
def left_straight_left(x, y, phi):
u, t = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if t >= 0.0:
v = mod2pi(phi - t)
if v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
def left_right_left(x, y, phi):
u1, t1 = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if u1 <= 4.0:
u = -2.0 * math.asin(0.25 * u1)
t = mod2pi(t1 + 0.5 * u + math.pi)
v = mod2pi(phi - t + u)
if t >= 0.0 >= u:
return True, t, u, v
return False, 0.0, 0.0, 0.0
def curve_curve_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_right_left(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"], step_size)
# backwards
xb = x * math.cos(phi) + y * math.sin(phi)
yb = x * math.sin(phi) - y * math.cos(phi)
flag, t, u, v = left_right_left(xb, yb, phi)
if flag:
paths = set_path(paths, [v, u, t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-xb, yb, -phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(xb, -yb, -phi)
if flag:
paths = set_path(paths, [v, u, t], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-xb, -yb, phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"], step_size)
return paths
def curve_straight_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_straight_left(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_left(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "L"], step_size)
flag, t, u, v = left_straight_right(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"], step_size)
return paths
def left_straight_right(x, y, phi):
u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi))
u1 = u1 ** 2
if u1 >= 4.0:
u = math.sqrt(u1 - 4.0)
theta = math.atan2(2.0, u)
t = mod2pi(t1 + theta)
v = mod2pi(t - phi)
if t >= 0.0 and v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
def generate_path(q0, q1, max_curvature, step_size):
dx = q1[0] - q0[0]
dy = q1[1] - q0[1]
dth = q1[2] - q0[2]
c = math.cos(q0[2])
s = math.sin(q0[2])
x = (c * dx + s * dy) * max_curvature
y = (-s * dx + c * dy) * max_curvature
paths = []
paths = straight_curve_straight(x, y, dth, paths, step_size)
paths = curve_straight_curve(x, y, dth, paths, step_size)
paths = curve_curve_curve(x, y, dth, paths, step_size)
return paths
def calc_interpolate_dists_list(lengths, step_size):
interpolate_dists_list = []
for length in lengths:
d_dist = step_size if length >= 0.0 else -step_size
interp_dists = np.arange(0.0, length, d_dist)
interp_dists = np.append(interp_dists, length)
interpolate_dists_list.append(interp_dists)
return interpolate_dists_list
def generate_local_course(lengths, modes, max_curvature, step_size):
interpolate_dists_list = calc_interpolate_dists_list(lengths, step_size)
origin_x, origin_y, origin_yaw = 0.0, 0.0, 0.0
xs, ys, yaws, directions = [], [], [], []
for (interp_dists, mode, length) in zip(interpolate_dists_list, modes,
lengths):
for dist in interp_dists:
x, y, yaw, direction = interpolate(dist, length, mode,
max_curvature, origin_x,
origin_y, origin_yaw)
xs.append(x)
ys.append(y)
yaws.append(yaw)
directions.append(direction)
origin_x = xs[-1]
origin_y = ys[-1]
origin_yaw = yaws[-1]
return xs, ys, yaws, directions
def interpolate(dist, length, mode, max_curvature, origin_x, origin_y,
origin_yaw):
if mode == "S":
x = origin_x + dist / max_curvature * math.cos(origin_yaw)
y = origin_y + dist / max_curvature * math.sin(origin_yaw)
yaw = origin_yaw
else: # curve
ldx = math.sin(dist) / max_curvature
ldy = 0.0
yaw = None
if mode == "L": # left turn
ldy = (1.0 - math.cos(dist)) / max_curvature
yaw = origin_yaw + dist
elif mode == "R": # right turn
ldy = (1.0 - math.cos(dist)) / -max_curvature
yaw = origin_yaw - dist
gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy
gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy
x = origin_x + gdx
y = origin_y + gdy
return x, y, yaw, 1 if length > 0.0 else -1
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
q0 = [sx, sy, syaw]
q1 = [gx, gy, gyaw]
paths = generate_path(q0, q1, maxc, step_size)
for path in paths:
xs, ys, yaws, directions = generate_local_course(path.lengths,
path.ctypes, maxc,
step_size * maxc)
# convert global coordinate
path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for
(ix, iy) in zip(xs, ys)]
path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for
(ix, iy) in zip(xs, ys)]
path.yaw = [pi_2_pi(yaw + q0[2]) for yaw in yaws]
path.directions = directions
path.lengths = [length / maxc for length in path.lengths]
path.L = path.L / maxc
return paths
def reeds_shepp_path_planning(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
if not paths:
return None, None, None, None, None # could not generate any path
# search minimum cost path
best_path_index = paths.index(min(paths, key=lambda p: abs(p.L)))
b_path = paths[best_path_index]
return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths
def main():
print("Reeds Shepp path planner sample start!!")
start_x = -1.0 # [m]
start_y = -4.0 # [m]
start_yaw = np.deg2rad(85.0) # [rad]
end_x = 5.0 # [m]
end_y = 5.0 # [m]
end_yaw = np.deg2rad(-25.0) # [rad]
curvature = 0.1
step_size = 0.05
xs, ys, yaws, modes, lengths = reeds_shepp_path_planning(start_x, start_y,
start_yaw, end_x,
end_y, end_yaw,
curvature,
step_size)
if not xs:
assert False, "No path"
if __name__ == '__main__':
main()