-
Notifications
You must be signed in to change notification settings - Fork 0
/
GlobalSearchSolver.py
74 lines (68 loc) · 3.15 KB
/
GlobalSearchSolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from random import randint, choice, shuffle
import time
from Board import Board
from math import log
class GlobalSearchSolver:
def __init__(self, n):
if isinstance(n, Board):
self.construct_from_board(n)
else:
self.n = n
self.board = Board(n)
k = [i for i in range(self.n)]
shuffle(k)
for i in range(n):
self.board.add_queen(k[i], i)
self.count = 1
def perform_random_move(self):
c1 = randint(0, self.n-1)
c2 = randint(0, self.n-1)
while c1 == c2: # the columns must be different
c2 = randint(0, self.n-1)
return c1, c2
def construct_from_board(self, brd):
self.n = brd.n
self.board = brd
def find_next_move(self):
if self.board.get_total_queen_constraints() >= 5*log(self.n):
p = int(log(self.n) ** 2)
else:
p = self.n
max_constraints = self.board.get_queen_constraints(self.board.queens[0], 0)
chosen_col, best_difference = 0, 0
chosen_cols, possible_moves, already_checked = [], [], []
for q in range(self.n):
if self.board.get_queen_constraints(self.board.queens[q], q) > max_constraints:
max_constraints = self.board.get_queen_constraints(self.board.queens[q], q)
chosen_cols = [q]
elif self.board.get_queen_constraints(self.board.queens[q], q) == max_constraints:
chosen_cols.append(q)
shuffle(chosen_cols)
for chosen_col in chosen_cols:
chosen_row = self.board.get_queen(chosen_col)
already_checked.append(chosen_row)
for row in range(p):
if row != self.board.queens[chosen_col] and row not in already_checked:
other_col = self.board.get_queen_in_row(row)
new_constraints = self.board.constraints[chosen_col][row] + self.board.constraints[other_col][chosen_row] - 2
old_constraints = self.board.constraints[chosen_col][chosen_row] + self.board.constraints[other_col][row]
if not(self.board.attacks(chosen_row, chosen_col, row, other_col)) and new_constraints < old_constraints:
difference = old_constraints - new_constraints # surely >= 0
if difference > best_difference:
best_difference = difference
possible_moves = [(chosen_col, other_col)]
elif difference == best_difference:
possible_moves.append((chosen_col, other_col))
if len(possible_moves) > 5:
break
if not possible_moves:
return self.perform_random_move()
new_col = choice(possible_moves)
return new_col
def solve(self):
while not self.board.is_a_solution():
self.count += 1
old_col, dest_col = self.find_next_move()
old_row, dest_row = self.board.get_queen(old_col), self.board.get_queen(dest_col)
self.board.swap_rows(old_row, old_col, dest_row, dest_col)
return self.board