-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.html
2645 lines (2531 loc) · 137 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<!-- roboto font -->
<link href='https://fonts.googleapis.com/css?family=Roboto:300' rel='stylesheet' type='text/css'>
<link rel="icon" href="assets/img/lsd_flavicon.png" type="image/png">
<meta name="theme-color" content="#ffffff" />
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-141682504-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-141682504-1');
</script>
<!-- SEO -->
<meta property="og:title" content="Local Shape Descriptors for Neuron Segmentation" />
<meta property="og:type" content="article" />
<meta property="og:description" content="Auxiliary learning for large scale connectomics" />
<meta property="og:image" content="assets/img/lsds_header.jpeg" />
<meta property="og:url" content="https://localshapedescriptors.github.io" />
<!-- Twitter Card data -->
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Local Shape Descriptors for Neuron Segmentation" />
<meta name="twitter:description" content="" />
<meta property="og:site_name" content="Local Shape Descriptors for Neuron Segmentation" />
<meta name="twitter:image" content="assets/img/lsds_header.jpeg" />
</head>
<style>
body {
margin: 0px;
}
pre {
white-space: pre-wrap; /* css-3 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
.row {
display: flex;
flex-wrap: wrap;
padding: 0 4px;
}
/* Create four equal columns that sits next to each other */
.column {
flex: 25%;
max-width: 25%;
padding: 0 4px;
}
.column img {
vertical-align: middle;
width: 100%;
}
/* Responsive layout - makes a two column-layout instead of four columns */
@media screen and (max-width: 800px) {
.column {
flex: 50%;
max-width: 50%;
}
}
/* Responsive layout - makes the two columns stack on top of each other instead of next to each other */
@media screen and (max-width: 600px) {
.column {
flex: 100%;
max-width: 100%;
}
}
.image-grid {
display: flex;
flex-wrap: wrap;
width: 90%;
margin: 0 auto;
}
.grid-image {
display: block;
flex-basis: 100%;
width: 100%;
height: 100%;
padding: 10px;
box-sizing: border-box;
}
@media only screen and (min-width: 640px) {
.grid-image {
flex-basis: 50%;
}
}
@media only screen and (min-width: 960px) {
.grid-image {
flex-basis: 33.333%;
}
}
@media only screen and (min-width: 1280px) {
.grid-image {
flex-basis: 25%;
}
}
@media only screen and (min-width: 1600px) {
.grid-image {
flex-basis: 20%;
}
}
.a {
position: absolute;
z-index: 3;
}
.b {
position: absolute;
z-index: 2;
}
.img-magnifier-glass {
position: absolute;
border: 2px solid #000;
border-radius: 50%;
cursor: none;
/*Set the size of the magnifier glass:*/
width: 50px;
height: 50px;
z-index: 1;
}
.accordion-container {
position: relative;
width: 100%;
overflow: hidden;
margin: auto;
}
.responsive-container {
position: relative;
width: 100%;
overflow: hidden;
margin: auto;
padding-top: 56.25%; /* 16:9 Aspect Ratio */
}
.test-container {
position: relative;
width: 100%;
height: 100%;
overflow: hidden;
margin: auto;
border: 5px solid red;
padding-top: 56.25%; /* 16:9 Aspect Ratio */
}
.plot-container {
position: relative;
width: 100%;
height: 650px;
overflow: hidden;
margin: auto;
}
.responsive-iframe {
position: absolute;
top: 0;
left: 0;
bottom: 0;
right: 0;
width: 100%;
height: 100%;
display: block;
border: none;
}
.scroll-down {
width: 80px;
height: 40px;
right: 10px;
bottom: 10px;
position: absolute;
font-family: "Roboto","Helvetica Neue",Helvetica,Arial,sans-serif;
font-size: 12px;
font-weight: 300;
color: #FFFFFF;
opacity: 0;
-webkit-transition: opacity 2s ease-in;
-moz-transition: opacity 2s ease-in;
-o-transition: opacity 2s ease-in;
-ms-transition: opacity 2s ease-in;
transition: opacity 2s ease-in;
}
.scroll-down span {
margin-top: 5px;
position: absolute;
left: 50%;
transform: translate(-100%, 0) rotate(45deg);
transform-origin: 100% 100%;
height: 2px;
width: 10px;
background: #FFFFFF;
}
.scroll-down span:nth-of-type(2) {
transform-origin: 0 100%;
transform: translate(0, 0) rotate(-45deg);
}
.spinner {
position: absolute;
height: 160px;
width: 160px;
-webkit-animation: rotation .6s infinite linear;
-moz-animation: rotation .6s infinite linear;
-o-animation: rotation .6s infinite linear;
animation: rotation .6s infinite linear;
border-left: 6px solid rgba(0, 174, 239, .15);
border-right: 6px solid rgba(0, 174, 239, .15);
border-bottom: 6px solid rgba(0, 174, 239, .15);
border-top: 6px solid rgba(0, 174, 239, .8);
border-radius: 100%;
top: calc(50% - 100px);
left: calc(50% - 80px);
right: auto;
bottom: auto;
}
.accordion {
margin: auto;
position: relative;
}
.accordion input {
display: none;
}
.tooltip {
position: relative;
display: inline-block;
border-bottom: 1px dotted black;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 170px;
background-color: black;
color: #fff;
text-align: center;
border-radius: 6px;
padding: 5px 0;
/* Position the tooltip */
position: absolute;
z-index: 1;
}
.tooltip:hover .tooltiptext {
visibility: visible;
}
.box {
position: relative;
background: white;
height: 64px;
transition: all .15s ease-in-out;
}
.box::before {
content: '';
position: absolute;
display: block;
top: 0;
bottom: 0;
left: 0;
right: 0;
pointer-events: none;
box-shadow: 0 -1px 0 #e5e5e5,0 0 2px rgba(0,0,0,.12),0 2px 4px rgba(0,0,0,.24);
}
header.box {
background: #00BCD4;
z-index: 100;
cursor: initial;
box-shadow: 0 -1px 0 #e5e5e5,0 0 2px -2px rgba(0,0,0,.12),0 2px 4px -4px rgba(0,0,0,.24);
}
header.box-title {
margin: 0;
font-weight: normal;
font-size: 16pt;
color: white;
cursor: initial;
}
.box-title {
width: calc(100% - 40px);
height: 64px;
line-height: 64px;
padding: 0 20px;
display: inline-block;
cursor: pointer;
-webkit-touch-callout: none;-webkit-user-select: none;-khtml-user-select: none;-moz-user-select: none;-ms-user-select: none;user-select: none;
}
.box-content {
width: 100%;
height: 100%;
display: none;
overflow: hidden;
margin: auto;
}
.box-close {
position: absolute;
height: 64px;
width: 100%;
top: 0;
left: 0;
cursor: pointer;
display: none;
}
input:checked + .box {
height: auto;
margin: 16px 0;
box-shadow: 0 0 6px rgba(0,0,0,.16),0 6px 12px rgba(0,0,0,.32);
}
input:checked + .box .box-title {
border-bottom: 1px solid rgba(0,0,0,.18);
}
input:checked + .box .box-content,
input:checked + .box .box-close {
display: inline-block;
}
.arrows section .box-title {
padding-left: 44px;
width: calc(100% - 64px);
}
.arrows section .box-title:before {
position: absolute;
display: block;
content: '\203a';
font-size: 18pt;
left: 20px;
top: -2px;
transition: transform .15s ease-in-out;
color: rgba(0,0,0,.54);
}
input:checked + section.box .box-title:before {
transform: rotate(90deg);
}
@-webkit-keyframes rotation {
from {
-webkit-transform: rotate(0deg);
}
to {
-webkit-transform: rotate(359deg);
}
}
.transparent {
opacity: 0;
}
figcaption {
padding: 0.5em;
color: rgba(0, 0, 0, 0.6);
font-size: 12px;
line-height: 1.5em;
text-align: left;
}
dt-article figcaption {
padding: 0.5em;
color: rgba(0, 0, 0, 0.6);
font-size: 12px;
line-height: 1.5em;
text-align: center;
}
dt-article figcaption a {
color: rgba(0, 0, 0, 0.6);
}
dt-article figcaption b {
font-weight: 600;
color: rgba(0, 0, 0, 1.0);
}
*.unselectable {
-moz-user-select: -moz-none;
-khtml-user-select: none;
-webkit-user-select: none;
-o-user-select: none;
user-select: none;
}
*.svgunselectable {
-moz-user-select: -moz-none;
-khtml-user-select: none;
-webkit-user-select: none;
-o-user-select: none;
user-select: none;
background: none;
pointer-events: none;
}
.btn-group button {
background-color: orange;
border: 1px solid #FF6C00;
color: white; /* White text */
padding: 5px 12px; /* Some padding */
cursor: pointer; /* Pointer/hand icon */
float: center; /* Float the buttons side by side */
}
#toc_container {
float: left;
width: auto;
background: #eee;
font-size: 0.8em;
padding: 1em 1em;
margin: 0 4em 1em 3em;
border: 1px solid #aaa;
}
.toc_title {
font-weight: 700;
text-align: center;
}
#toc_container ul>li {
margin: 0 0 .6em 0;
list-style-type: none;
}
#toc_container a {
text-decoration: none;
color: #3D5AFE;
}
/* Add a background color on hover */
.btn-group button:hover {
background-color: #FF6C00;
}
#toc_scroll {
display: none;
position: fixed;
bottom: 20px;
right: 30px;
z-index: 99;
border: 2px solid #008CBA;
outline: none;
background-color: white;
color: black;
cursor: pointer;
padding: 5px;
font-size: 18px;
border-radius: 8px;
}
#toc_scroll:hover {
background-color: #aaa;
}
</style>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script src="lib/mobile-detect.min.js"></script>
<script src="lib/template.v1.js"></script>
<script type="text/front-matter">
title: "LSDs"
description: ""
</script>
<body>
<div style="text-align: center;">
<img class="b-lazy"
src=
data-src="assets/img/small/lsds_header.jpeg"
srcset="assets/img/small/lsds_header.jpeg 320w,
assets/img/medium/lsds_header.jpeg 800w,
assets/img/large/lsds_header.jpeg 1200w,
assets/img/xlarge/lsds_header.jpeg 1920w"
sizes="100vw"
alt="LSD direction vectors">
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="50%"><figcaption style="text-align: center;">Direction vectors of
the LSDs on a single neuron from the fly visual system. Colors correspond
to the direction in which the neuronal processes travel.</figcaption></td>
</tr></table>
</div>
<dt-article class="centered" id="dtbody">
<dt-byline class="l-page transparent"></dt-byline>
<h1>Local Shape Descriptors for Neuron Segmentation</h1>
<p></p>
<dt-byline class="l-page" id="authors_section" hidden>
<div class="byline">
<div class="authors">
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=Md__FUQAAAAJ&hl=en&oi=ao">Arlo Sheridan</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.salk.edu/science/core-facilities/advanced-biophotonics">Salk Institute</a>
</div>
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=AnU408sAAAAJ&hl=en">Tri M. Nguyen</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.lee.hms.harvard.edu/">Harvard University</a>
</div>
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=gBcB_UUAAAAJ&hl=en">Diptodip Deb</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.janelia.org/lab/turaga-lab">HHMI Janelia</a>
</div>
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=y2s07ssAAAAJ&hl=en">Wei-Chung Allen Lee</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.lee.hms.harvard.edu/">Harvard University</a>
</div>
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=oSGyzt4AAAAJ&hl=en">Stephan Saalfeld</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.janelia.org/lab/saalfeld-lab">HHMI Janelia</a>
</div>
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=V_NdI3sAAAAJ&hl=en">Srini Turaga</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.janelia.org/lab/turaga-lab">HHMI Janelia</a>
</div>
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=_ZLy6tEAAAAJ&hl=en">Uri Manor</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.salk.edu/science/core-facilities/advanced-biophotonics">Salk Institute</a>
</div>
<div class="author">
<a class="name" target="_blank" rel="noopener noreferrer" href="https://scholar.google.com/citations?user=7rqAapgAAAAJ&hl=en">Jan Funke</a>
<a class="affiliation" target="_blank" rel="noopener noreferrer" href="https://www.janelia.org/lab/funke-lab">HHMI Janelia</a>
</div>
</div>
<div class="date"> <div style="color: #2AAFCF;"><a target="_blank"
rel="noopener noreferrer"
href="https://www.biorxiv.org/content/10.1101/2021.01.18.427039v1"
target="_blank">LSD Paper</a></div>
</div>
</div>
</dt-byline>
</dt-byline>
<button onclick="topFunction()" id="toc_scroll" title="Scroll to toc">Contents</button>
<script>
var mybutton = document.getElementById("toc_scroll");
window.onscroll = function() {scrollFunction()};
function scrollFunction() {
var toc = document.getElementById("toc_container");
if (window.scrollY > (toc.offsetTop + toc.offsetHeight)) {
mybutton.style.display = "block";
} else {
mybutton.style.display = "none";
}
}
function topFunction() {
document.getElementById("toc_container").scrollIntoView();
}
</script>
<h2>Abstract</h2>
<p>We present a simple, yet effective, auxiliary learning task for the problem of
neuron segmentation in electron microscopy volumes. The auxiliary task
consists of the prediction of Local Shape Descriptors (LSDs), which we combine
with conventional voxel-wise direct neighbor affinities for neuron boundary
detection. The shape descriptors are designed to capture local statistics
about the neuron to be segmented, such as diameter, elongation, and direction.
On a large study comparing several existing methods across various specimen,
imaging techniques, and resolutions, we find that auxiliary learning of LSDs
consistently increases segmentation accuracy of affinity-based methods over a
range of metrics. Furthermore, the addition of LSDs promotes affinity-based
segmentation methods to be on par with the current state of the art for neuron
segmentation (Flood-Filling Networks, FFN), while being two orders of
magnitudes more efficient - a critical requirement for the processing of
future petabyte-sized datasets. Implementations of the new auxiliary learning
task, network architectures, training, prediction, and evaluation code, as
well as the datasets used in this study are publicly available as a benchmark
for future method contributions.</p>
<hr>
<div id="toc_container">
<p class="toc_title">Contents</p>
<ul class="toc_list">
<li><a href="#background">1. Background</a>
<ul>
<li><a href="#connectomics">1.1 Connectomics</a></li>
<li><a href="#neuron_segmentation">1.2 Neuron Segmentation</a></li>
<li><a href="#related_work">1.3 Related Work</a></li>
<li><a href="#contributions">1.4 Contributions</a></li>
</ul>
</li>
<li><a href="#methods">2. Methods</a></li>
<ul>
<li><a href="#local_shape_descriptors">2.1 Local Shape Descriptors</a></li>
<li><a href="#network_architectures">2.2 Network Architectures</a></li>
</ul>
<li><a href="#results">3. Results</a></li>
<ul>
<li><a href="#datasets">3.1 Datasets</a></li>
<li><a href="#accuracy">3.2 Accuracy</a></li>
<li><a href="#throughput">3.3 Throughput</a></li>
</ul>
<li><a href="#discussion">4. Discussion</a></li>
<li><a href="#acknowledgements">5. Acknowledgements</a></li>
<li><a href="#code">6. Code</a></li>
<li><a href="#references">7. References</a></li>
</ul>
</div>
<h2 id="tldr">Tl;dr</h2>
<ul>
<li>
<p>Connectomics is a relatively new field combining neuroscience, microscopy, biology and computer science.</p>
</li>
<li>
<p>The goal is to generate maps of the brain at synaptic resolution. By doing so,
it will hopefully lead to a better understanding of how things work and
subsequently advance medical approaches to various diseases.</p>
</li>
<li>
<p>The datasets required to produce these brain maps are massive since they have
to be imaged at such a high resolution.</p>
</li>
<li>
<p>Manually reconstructing wiring diagrams in the datasets is extremely time consuming and
expensive so there is a great need to automate the process.</p>
</li>
<li>
<p>Reconstructing neurons is challenging because many consecutively correct decisions must be made. Errors can propagate throughout a dataset easily.</p>
</li>
<li>
<p>Methods need to also be computationally efficient and scalable to account
for the size of the data.</p>
</li>
<li>
<p>We present a novel approach to neuron segmentation, Local Shape Descriptors
(LSDs) - a 10-Dimensional embedding used as an auxiliary learning objective
for boundary detection.</p>
</li>
<li>
<p>We find that the LSDs help improve boundaries and subsequent neuron
reconstructions in several large and diverse datasets and are competitive with
the current state of the art, albeit two orders of magnitude faster.</p>
</li>
</ul>
<hr>
<h2 id="background">Background</h2>
<h3 id="connectomics">Connectomics</h3>
<p>Connectomics is an emerging field which integrates multiple domains including
neuroscience, microscopy, and computer science. The overarching goal is to
provide insights about the brain at resolutions which are not achievable with
other approaches. The ability to study neural structures at this scale will
hopefully lead to a better understanding of brain disorders, and subsequently
advance medical approaches towards finding treatments & cures.</p>
<p>The basic idea is to produce "connectomes" which are essentially maps of the
brain. These maps, or "wiring diagrams", give scientists the ability to see how
every neuron interacts through synaptic connections. They can be used to
complement existing techniques <dt-cite
key="schlegel_synaptic_2016,turner-evans_neuroanatomical_2020"></dt-cite> and
drive future experiments <dt-cite
key="schneider-mizell_quantitative_2016,motta_dense_2019,bates_complete_2020"></dt-cite>.</p>
<p>Currently, only Electron Microscopy (EM) allows imaging of neural tissue at a
resolution sufficient to see individual synapses. Unfortunately, by imaging
brains at such high resolution, the resulting data is massive. Let's consider
the fruit fly example. A full adult fruit fly brain (<strong>FAFB</strong>) imaged with
ssTEM <dt-cite key="zheng_complete_2018"></dt-cite> at a pixel resolution of ~4
nanometers and ~40 nanometer thick sections, comprises ~50 teravoxels of data
(neuropil)<dt-cite key="heinrich_synaptic_2018"></dt-cite>. For reference, a
voxel is a volumetric pixel, and the "tera" prefix means 10<sup>12</sup>. So,
one fly brain contains upwards of 50,000,000,000,000 volumetric pixels. To put
that in perspective, <dt-cite key="abbott_mind_2020">Abbott et al.</dt-cite>
argue that, assuming a scale where 1000 cubic microns is equivalent to 1
centimeter, a fruit fly brain would comprise the length of 6 and a half Boeing
747 aeroplanes. This still pales in comparison to a mouse brain which would
require the acquisition of 1 million terabytes of data.</p>
<div style="text-align: center;">
<img class="b-lazy"
id="scale_large"
src=
data-src="assets/img/large/scale.jpeg" style="margin: auto; width: 100%;"/>
<img class="b-lazy"
id="scale_vertical"
src=
data-src="assets/img/medium/scale_vertical.jpeg" style="margin: auto; width: 100%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="50%"><figcaption style="text-align: center;">Scale perspective. A
fruit fly brain imaged at synaptic resolution takes up 100's of terabytes of
storage space. It allows us to see fine structures such as neural plasma
membranes (pink arrow), synapses (blue arrow), vesicles (green arrow) and
mitochondria (orange arrow). 3D fruit fly model kindly provided by <a
href="https://scholar.google.com/citations?user=ir1vhA8AAAAJ&hl=en"
target="_blank">Igor Siwanowicz</a></figcaption></td>
</tr></table>
</div>
<div class="accordion-container" id="fafb_div">
<nav class="accordion arrows">
<input type="radio" name="accordion" id="fafb" checked/>
<section class="box">
<label class="box-title" for="fafb">Fly brain viewer</label>
<label class="box-close" for="acc-open"></label>
<input type="radio" name="accordion" id="acc-open"/>
<div class="box-content"><div><p>Try navigating the fly brain in an
interactive <a href="https://github.com/google/neuroglancer"
target="_blank">Neuroglancer</a> viewer (click question mark in top right
corner for controls).
Think, Google Earth for brains:</p> </div>
<div class="box-content">
<div class="responsive-container">
<iframe class="responsive-iframe" src="https://neuroglancer-demo.appspot.com/#!%7B%22dimensions%22:%7B%22x%22:%5B8e-9%2C%22m%22%5D%2C%22y%22:%5B8e-9%2C%22m%22%5D%2C%22z%22:%5B4e-8%2C%22m%22%5D%7D%2C%22position%22:%5B63696.5703125%2C30152.005859375%2C3242.8369140625%5D%2C%22crossSectionScale%22:413.08059520030787%2C%22projectionOrientation%22:%5B-0.06840167939662933%2C-0.4631274342536926%2C-0.204045370221138%2C0.8597671985626221%5D%2C%22projectionScale%22:124585.76409043159%2C%22layers%22:%5B%7B%22type%22:%22image%22%2C%22source%22:%22precomputed://gs://neuroglancer-fafb-data/fafb_v14/fafb_v14_clahe%22%2C%22tab%22:%22annotations%22%2C%22annotationColor%22:%22#0088ff%22%2C%22name%22:%22fafb_v14_clahe%22%7D%5D%2C%22selectedLayer%22:%7B%22layer%22:%22fafb_v14_clahe%22%7D%2C%22layout%22:%224panel%22%2C%22partialViewport%22:%5B0%2C0%2C1%2C1%5D%7D">
</iframe>
</div>
</div>
</section>
</nav>
</div>
<p>Okay, now we have the data, so how do we create the wiring diagrams?</p>
<p>To create a wiring diagram, we need to reconstruct all of the neurons and their
synaptic connections. This process can be done manually - which consists of
human annotators navigating these datasets and labeling every neuron and their
synaptic partners using various software <dt-cite
key="saalfeld2009catmaid,boergens_webknossos_2017,berger_vast_2018,zhao_neutu_2018"></dt-cite>.
However, this can become extremely tedious and expensive (<strong>$$$</strong>) given the
size of the datasets. For example, simply reconstructing 129 neurons from
<strong>FAFB</strong> took a team of tracers ~60 days to complete<dt-cite
key="zheng_complete_2018"></dt-cite>. Given that a fruit fly has ~100,000
neurons, purely manual reconstruction of connectomes is obviously infeasible.</p>
<p>Consequently, methods have been developed to automate this process. From here
on, we will focus on the automatic reconstruction of neurons. To see the current
approaches to synapse detection, check <dt-cite
key="kreshuk_who_2015,heinrich_synaptic_2018,huang_fully-automatic_2018,buhmann_automatic_2020">
these papers</dt-cite> out!</p>
<h3 id="neuron_segmentation">Neuron Segmentation</h3>
<p>Neuron segmentation is the current rate-limiting step for generating large
connectomes. Errors in a neuron segmentation can easily propagate throughout a
dataset as the scale increases, which makes it tedious for humans to proofread
the data without advanced tools.</p>
<div class="accordion-container">
<nav class="accordion arrows">
<input type="radio" name="accordion" id="seg" />
<section class="box">
<label class="box-title" for="seg">Segmentation overview</label>
<label class="box-close" for="acc-close"></label>
<div class="box-content"><div> <p> To better understand the problem of neuron
segmentation, it is necessary to understand what segmentation is. There are a
few ways to detect objects in an image. A standard approach is called
<b>object detection</b> which is a technique used to locate and label objects,
often resulting in fitting a bounding box to each object. This is a good
strategy for finding and tracking objects in an image but it neglects the
volumetric data contained within an object. An alternative method is called
segmentation in which every pixel of an object is assigned to a class. There
are two main techniques: <b>semantic segmentation</b> and <b>instance
segmentation</b>. In semantic segmentation, each pixel is assigned to a
broader class, for example each car in an image would be assigned to a car
class and each animal in an image would be assigned to a animal class.
Conversely, instance segmentation assigns each pixel to a unique label.
Consider the following example:</p>
</div>
<div class="box-content"><div style="text-align: center;">
<img id="shoes" src="assets/img/detection_vs_segmentation_shoes.jpeg" style="margin: auto; width: 100%;"/>
<img id="shoes_vertical" src="assets/img/detection_vs_segmentation_shoes_vertical.jpeg" style="margin: auto; width: 100%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="50%"><figcaption style="text-align: center;">Each shoe in the image
can be located (object detection), each pixel of each shoe can be assigned to
a class indicating the type of shoe (semantic segmentation - soccer cleats,
boots, sneakers), and each pixel can be assigned a unique label indicating the
specific shoe (instance segmentation)</figcaption></td>
</tr></table>
</div>
</div>
</section>
<input type="radio" name="accordion" id="acc-close" />
</nav>
</div>
<p>Neuron reconstruction is an instance segmentation problem because every pixel of
every neuron needs to be assigned a unique label (in contrast to object
detection and semantic segmentation). Take the following example:</p>
<div style="text-align: center;">
<img class="b-lazy"
id="neurons"
src=
data-src="assets/img/detection_vs_segmentation_neurons.jpeg"
style="margin: auto; width: 100%;"/>
<img class="b-lazy"
id="neurons_vertical"
src=
data-src="assets/img/detection_vs_segmentation_neurons_vertical.jpeg"
style="margin: auto; width: 100%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="50%"><figcaption style="text-align: center;">Given a raw EM image,
we could simply detect mitochondria (object detection), assign all pixels
containing mitochondria to one class (semantic segmentation), or assign all
pixels of each object to a unique class (instance segmentation). Our goal in
this paper is the latter.</figcaption></td> </tr></table>
</div>
<div class="accordion-container" id="labels_div">
<nav class="accordion arrows">
<input type="radio" name="accordion" id="labels" />
<section class="box">
<label class="box-title" for="labels">Raw + Labels viewer</label>
<label class="box-close" for="acc-close"></label>
<div class="box-content"><div><p>An example training batch showing raw data and
the corresponding ground truth labels (unique neurons) which were reconstructed
by a human expert. These labels are used to generate ground truth LSDs which are
then passed into a neural network</p> </div>
<div class="box-content"><div class="responsive-container">
<iframe class="responsive-iframe" src="https://neuroglancer-demo.appspot.com/#!%7B%22dimensions%22:%7B%22d0%22:%5B1%2C%22%22%5D%2C%22d1%22:%5B1%2C%22%22%5D%2C%22d2%22:%5B1%2C%22%22%5D%7D%2C%22position%22:%5B98.5%2C98.5%2C98.5%5D%2C%22crossSectionScale%22:1.0176722261336113%2C%22projectionOrientation%22:%5B-0.21856307983398438%2C-0.4040609300136566%2C-0.18352380394935608%2C0.8690707087516785%5D%2C%22projectionScale%22:484.7402817353436%2C%22layers%22:%5B%7B%22type%22:%22image%22%2C%22source%22:%22zarr://https://raw.githubusercontent.com/LocalShapeDescriptors/LocalShapeDescriptors.github.io/draft/assets/zarrs/fib.zarr/raw%22%2C%22tab%22:%22annotations%22%2C%22annotationColor%22:%22#fb00ff%22%2C%22name%22:%22raw%22%7D%2C%7B%22type%22:%22segmentation%22%2C%22source%22:%7B%22url%22:%22zarr://https://raw.githubusercontent.com/LocalShapeDescriptors/LocalShapeDescriptors.github.io/draft/assets/zarrs/fib.zarr/labels%22%2C%22transform%22:%7B%22matrix%22:%5B%5B1%2C0%2C0%2C52%5D%2C%5B0%2C1%2C0%2C52%5D%2C%5B0%2C0%2C1%2C52%5D%5D%2C%22outputDimensions%22:%7B%22d0%22:%5B1%2C%22%22%5D%2C%22d1%22:%5B1%2C%22%22%5D%2C%22d2%22:%5B1%2C%22%22%5D%7D%7D%2C%22subsources%22:%7B%22default%22:true%2C%22bounds%22:true%7D%2C%22enableDefaultSubsources%22:false%7D%2C%22tab%22:%22source%22%2C%22annotationColor%22:%22#00d9ff%22%2C%22crossSectionRenderScale%22:0.24230351153893748%2C%22colorSeed%22:54670317%2C%22name%22:%22labels%22%7D%5D%2C%22selectedLayer%22:%7B%22layer%22:%22raw%22%7D%2C%22layout%22:%224panel%22%7D"></iframe>
</div>
</div>
</section>
<input type="radio" name="accordion" id="acc-close" />
</nav>
</div>
<p>It would be ideal to directly predict unique labels (i.e neurons) in a dataset.
Unfortunately this requires global information which is difficult because
neurons span large distances. Due to the nature of neural networks, field of
views are not large enough to account for downstream changes in a neuron such as
branching and merging. Consequently, alternative approaches aim to solve the
problem locally.</p>
<h3 id="related_work">Related Work</h3>
<p>Most current approaches to neuron segmentation center around producing boundary
maps which are then used to generate unique objects with post-processing steps.
Consider the following example:</p>
<div style="text-align: center;">
<img class="b-lazy"
src=
data-src="assets/img/labels.jpeg"
style="display: block; margin: auto; width: 50%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="100%"><figcaption style="text-align: center;">We have four neurons
(A,B,C,D) and we want to assign voxels (squares) to the label they belong to.
Images kindly provided by <a
href="https://scholar.google.com/citations?user=oSGyzt4AAAAJ&hl=en"
target="_blank">Stephan Saalfeld</a>.</figcaption></td>
</tr></table>
</div>
<ul>
<li>Foreground / Background
<ul>
<li>It is often sufficient to assign pixels as either foreground or background
and then perform connected components to label unique objects <dt-cite
key="ciresan_deep_2012"></dt-cite>. This technique can fail for neuron
segmentation because the axial resolution of fine-tip neurites is lower.</li>
</ul>
</li>
</ul>
<div style="text-align: center;">
<img class="b-lazy"
src=
data-src="assets/img/boundaries.jpeg"
style="display: block; margin: auto; width: 50%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="100%"><figcaption style="text-align: center;">Naively labeling
foreground voxels (white squares) and background voxels (black squares) would
result in the top part of the yellow neuron (B) being falsely labeled as
background.</figcaption></td>
</tr></table>
</div>
<ul>
<li>Nearest-neighbor Affinities
<ul>
<li>One solution is to predict edges between neighboring voxels rather than the
voxels themselves <dt-cite
key="turaga_convolutional_2010,funke_large_2019"></dt-cite>. This ensures
that distal processes receive the same treatment as larger axons. Since
these affinity graphs can be computed locally, they can be parallelized
which leads to performance increases. However, affinities are sensitive to
small errors. A few incorrectly assigned pixels can lead to false merges
during post-processing.</li>
</ul>
</li>
</ul>
<div style="text-align: center;">
<img class="b-lazy"
src=
data-src="assets/img/affinities.jpeg"
style="display: block; margin: auto; width: 50%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="100%"><figcaption style="text-align: center;">The top part of the
yellow neuron would now be correctly assigned. However, slight changes in
boundary predictions could result in subsequent post-processing
errors.</figcaption></td>
</tr></table>
</div>
<ul>
<li>Long Range Affinities
<ul>
<li>In order to incorporate more context for the receptive field of the network, a larger affinity neighborhood can be used as an auxiliary learning objective <dt-cite
key="lee_superhuman_2017"></dt-cite>. This theoretically helps to improve
the nearest neighbor affinities and the resulting segmentations.</li>
</ul>
</li>
</ul>
<div style="text-align: center;">
<img class="b-lazy"
src=
data-src="assets/img/longrange.jpeg"
style="display: block; margin: auto; width: 50%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="100%"><figcaption style="text-align: center;">Several increased
neighborhood steps can be used to provide increased context to the nearest
neighbor affinities. This essentially allows the network to see more than it
otherwise would.</figcaption></td>
</tr></table>
</div>
<ul>
<li>MALIS loss
<ul>
<li>The above approaches rely on a Euclidean loss. An alternative loss function
(MALIS) <dt-cite key="turaga_maximin_2009"></dt-cite> penalizes topological
errors by minimizing the Rand Index, a measure of similarity between
clusterings <dt-cite key="rand_objective_1971"></dt-cite>. This method has
been further optimized by constraining the loss to a positive and negative
pass followed by growing a maximal spanning tree on the affinity graph
<dt-cite key="funke_large_2019"></dt-cite>.</li>
</ul>
</li>
</ul>
<div style="text-align: center;">
<img class="b-lazy"
src=
data-src="assets/img/malis.jpeg"
style="display: block; margin: auto; width: 50%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="100%"><figcaption style="text-align: center;">After predicting
affinities, losses are computed on maximin edges and a maximal spanning tree
(line) is grown to identify maximin edges.</figcaption></td>
</tr></table>
</div>
<ul>
<li>Flood Filling Networks (FFN)
<ul>
<li>The current state of the art approach <dt-cite
key="januszewski_high-precision_2018"></dt-cite> eliminates the need for a
separate post-processing step. After generateing seed points within neurons,
a recurrent CNN iteratively fills each object by predicting which voxels
belong to the same objects as the seeds.</li>
</ul>
</li>
</ul>
<div style="text-align: center;">
<img class="b-lazy"
src=
data-src="assets/img/ffn.jpeg"
style="display: block; margin: auto; width: 50%;"/>
<table style="width: 100%;" cellspacing="0" cellpadding="0"><tr>
<td width="100%"><figcaption style="text-align: center;">Given seed points
inside a neuron (large white square, for example), the network predicts which
voxels belong to the same neuron (white squares) and which belong to different
neurons (black squares).</figcaption></td>
</tr></table>
</div>
<ul>
<li>Other approaches
<ul>
<li>
<p>Deep Metric Learning</p>
<ul>
<li>A relatively new method uses deep metric learning to produce dense voxel
embeddings <dt-cite key="lee_learning_2019"></dt-cite>. Voxels within an
objects are similar in embedding space while voxels across objects are
repelled <dt-fn>This method was introduced after experiment completion and
is therefore not compared against.</dt-fn>.</li>
</ul>
</li>
<li>
<p>Watershed / Agglomeration Variants</p>
<ul>
<li>Other approaches <dt-cite
key="ferrari_mutex_2018,beier2017multicut"></dt-cite> aim to improve
segmentations by targeting the downstream graphs generated during
post-processing rather than the boundary labels <dt-fn>We assess boundary
prediction in this paper and do not consider post-processing
strategies.</dt-fn>.</li>
</ul>
</li>
</ul>
</li>
</ul>