-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_training_data.py
138 lines (126 loc) · 4.44 KB
/
generate_training_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import numpy as np
import os
import pandas as pd
import os
def generate_graph_seq2seq_io_data(
speed_df, flow_df, x_offsets, y_offsets, add_speed=True, add_flow=True, add_time_in_day=True, add_day_in_week=False, scaler=None
):
"""
Generate samples from
:param df:
:param x_offsets:
:param y_offsets:
:param add_time_in_day:
:param add_day_in_week:
:param scaler:
:return:
# x: (epoch_size, input_length, num_nodes, input_dim)
# y: (epoch_size, output_length, num_nodes, output_dim)
"""
num_samples, num_nodes = speed_df.shape
speed_data = np.expand_dims(speed_df.values, axis=-1)
flow_data = np.expand_dims(flow_df.values, axis=-1)
data_list = []
if add_speed:
data_list.append(speed_data)
if add_flow:
data_list.append(flow_data)
if add_time_in_day:
speed_df.index = pd.to_datetime(speed_df.index,format = '%Y-%m-%d %H:%M:%S')
time_ind = (speed_df.index.values - speed_df.index.values.astype("datetime64[D]")) / np.timedelta64(1, "D")
time_in_day = np.tile(time_ind, [1, num_nodes, 1]).transpose((2, 1, 0))
data_list.append(time_in_day)
if add_day_in_week:
day_in_week = np.zeros(shape=(num_samples, num_nodes, 7))
day_in_week[np.arange(num_samples), :, speed_df.index.dayofweek] = 1
data_list.append(day_in_week)
data = np.concatenate(data_list, axis=-1)
#print(data)
# epoch_len = num_samples + min(x_offsets) - max(y_offsets)
x, y = [], []
# t is the index of the last observation.
min_t = abs(min(x_offsets))
max_t = abs(num_samples - abs(max(y_offsets))) # Exclusive
for t in range(min_t, max_t):
x_t = data[t + x_offsets, ...]
y_t = data[t + y_offsets, ...]
x.append(x_t)
y.append(y_t)
x = np.stack(x, axis=0)
y = np.stack(y, axis=0)
return x, y
def generate_train_val_test(args):
#df = pd.read_hdf(args.traffic_df_filename)
store = pd.HDFStore(args.traffic_df_filename, mode='r')
speed_df = store['speed']
flow_df = store['flow']
# 0 is the latest observed sample.
x_offsets = np.sort(
# np.concatenate(([-week_size + 1, -day_size + 1], np.arange(-11, 1, 1)))
np.concatenate((np.arange(-11, 1, 1),))
)
# Predict the next one hour
y_offsets = np.sort(np.arange(1, 13, 1))
# x: (num_samples, input_length, num_nodes, input_dim)
# y: (num_samples, output_length, num_nodes, output_dim)
x, y = generate_graph_seq2seq_io_data(
speed_df,
flow_df,
x_offsets=x_offsets,
y_offsets=y_offsets,
add_speed=True,
add_flow=True,
add_time_in_day=True,
add_day_in_week=True,
)
# x: (num_samples, input_length, num_nodes, input_dim)
# y: (num_samples, output_length, num_nodes, output_dim)
print("x shape: ", x.shape, ", y shape: ", y.shape)
# Write the data into npz file.
# num_test = 6831, using the last 6831 examples as testing.
# for the rest: 7/8 is used for training, and 1/8 is used for validation.
num_samples = x.shape[0]
num_test = round(num_samples * 0.2)
num_train = round(num_samples * 0.7)
num_val = num_samples - num_test - num_train
# train
x_train, y_train = x[:num_train], y[:num_train]
# val
x_val, y_val = (
x[num_train: num_train + num_val],
y[num_train: num_train + num_val],
)
# test
x_test, y_test = x[-num_test:], y[-num_test:]
'''
print("x_test0 y_test0______________________")
print(x_test[0, :, 0, :])
print(y_test[0, :, 0, :])
'''
for cat in ["train", "val", "test"]:
_x, _y = locals()["x_" + cat], locals()["y_" + cat]
print(cat, "x: ", _x.shape, "y:", _y.shape)
np.savez_compressed(
os.path.join(args.output_dir, "%s.npz" % cat),
x=_x,
y=_y,
x_offsets=x_offsets.reshape(list(x_offsets.shape) + [1]),
y_offsets=y_offsets.reshape(list(y_offsets.shape) + [1]),
)
def main(args):
print("Generating training data")
generate_train_val_test(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output_dir", type=str, default="data/", help="Output directory."
)
parser.add_argument(
"--traffic_df_filename",
type=str,
default="download/pems-bay_0.h5",
help="Raw traffic readings.",
)
args = parser.parse_args()
main(args)