forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
learned_simulator.py
265 lines (216 loc) · 10.9 KB
/
learned_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Full model implementation accompanying ICML 2020 submission.
"Learning to Simulate Complex Physics with Graph Networks"
Alvaro Sanchez-Gonzalez*, Jonathan Godwin*, Tobias Pfaff*, Rex Ying,
Jure Leskovec, Peter W. Battaglia
https://arxiv.org/abs/2002.09405
"""
import graph_nets as gn
import sonnet as snt
import tensorflow.compat.v1 as tf
from learning_to_simulate import connectivity_utils
from learning_to_simulate import graph_network
STD_EPSILON = 1e-8
class LearnedSimulator(snt.AbstractModule):
"""Learned simulator from https://arxiv.org/pdf/2002.09405.pdf."""
def __init__(
self,
num_dimensions,
connectivity_radius,
graph_network_kwargs,
boundaries,
normalization_stats,
num_particle_types,
particle_type_embedding_size,
name="LearnedSimulator"):
"""Inits the model.
Args:
num_dimensions: Dimensionality of the problem.
connectivity_radius: Scalar with the radius of connectivity.
graph_network_kwargs: Keyword arguments to pass to the learned part
of the graph network `model.EncodeProcessDecode`.
boundaries: List of 2-tuples, containing the lower and upper boundaries of
the cuboid containing the particles along each dimensions, matching
the dimensionality of the problem.
normalization_stats: Dictionary with statistics with keys "acceleration"
and "velocity", containing a named tuple for each with mean and std
fields, matching the dimensionality of the problem.
num_particle_types: Number of different particle types.
particle_type_embedding_size: Embedding size for the particle type.
name: Name of the Sonnet module.
"""
super().__init__(name=name)
self._connectivity_radius = connectivity_radius
self._num_particle_types = num_particle_types
self._boundaries = boundaries
self._normalization_stats = normalization_stats
with self._enter_variable_scope():
self._graph_network = graph_network.EncodeProcessDecode(
output_size=num_dimensions, **graph_network_kwargs)
if self._num_particle_types > 1:
self._particle_type_embedding = tf.get_variable(
"particle_embedding",
[self._num_particle_types, particle_type_embedding_size],
trainable=True, use_resource=True)
def _build(self, position_sequence, n_particles_per_example,
global_context=None, particle_types=None):
"""Produces a model step, outputting the next position for each particle.
Args:
position_sequence: Sequence of positions for each node in the batch,
with shape [num_particles_in_batch, sequence_length, num_dimensions]
n_particles_per_example: Number of particles for each graph in the batch
with shape [batch_size]
global_context: Tensor of shape [batch_size, context_size], with global
context.
particle_types: Integer tensor of shape [num_particles_in_batch] with
the integer types of the particles, from 0 to `num_particle_types - 1`.
If None, we assume all particles are the same type.
Returns:
Next position with shape [num_particles_in_batch, num_dimensions] for one
step into the future from the input sequence.
"""
input_graphs_tuple = self._encoder_preprocessor(
position_sequence, n_particles_per_example, global_context,
particle_types)
normalized_acceleration = self._graph_network(input_graphs_tuple)
next_position = self._decoder_postprocessor(
normalized_acceleration, position_sequence)
return next_position
def _encoder_preprocessor(
self, position_sequence, n_node, global_context, particle_types):
# Extract important features from the position_sequence.
most_recent_position = position_sequence[:, -1]
velocity_sequence = time_diff(position_sequence) # Finite-difference.
# Get connectivity of the graph.
(senders, receivers, n_edge
) = connectivity_utils.compute_connectivity_for_batch_pyfunc(
most_recent_position, n_node, self._connectivity_radius)
# Collect node features.
node_features = []
# Normalized velocity sequence, merging spatial an time axis.
velocity_stats = self._normalization_stats["velocity"]
normalized_velocity_sequence = (
velocity_sequence - velocity_stats.mean) / velocity_stats.std
flat_velocity_sequence = snt.MergeDims(start=1, size=2)(
normalized_velocity_sequence)
node_features.append(flat_velocity_sequence)
# Normalized clipped distances to lower and upper boundaries.
# boundaries are an array of shape [num_dimensions, 2], where the second
# axis, provides the lower/upper boundaries.
boundaries = tf.constant(self._boundaries, dtype=tf.float32)
distance_to_lower_boundary = (
most_recent_position - tf.expand_dims(boundaries[:, 0], 0))
distance_to_upper_boundary = (
tf.expand_dims(boundaries[:, 1], 0) - most_recent_position)
distance_to_boundaries = tf.concat(
[distance_to_lower_boundary, distance_to_upper_boundary], axis=1)
normalized_clipped_distance_to_boundaries = tf.clip_by_value(
distance_to_boundaries / self._connectivity_radius, -1., 1.)
node_features.append(normalized_clipped_distance_to_boundaries)
# Particle type.
if self._num_particle_types > 1:
particle_type_embeddings = tf.nn.embedding_lookup(
self._particle_type_embedding, particle_types)
node_features.append(particle_type_embeddings)
# Collect edge features.
edge_features = []
# Relative displacement and distances normalized to radius
normalized_relative_displacements = (
tf.gather(most_recent_position, senders) -
tf.gather(most_recent_position, receivers)) / self._connectivity_radius
edge_features.append(normalized_relative_displacements)
normalized_relative_distances = tf.norm(
normalized_relative_displacements, axis=-1, keepdims=True)
edge_features.append(normalized_relative_distances)
# Normalize the global context.
if global_context is not None:
context_stats = self._normalization_stats["context"]
# Context in some datasets are all zero, so add an epsilon for numerical
# stability.
global_context = (global_context - context_stats.mean) / tf.math.maximum(
context_stats.std, STD_EPSILON)
return gn.graphs.GraphsTuple(
nodes=tf.concat(node_features, axis=-1),
edges=tf.concat(edge_features, axis=-1),
globals=global_context, # self._graph_net will appending this to nodes.
n_node=n_node,
n_edge=n_edge,
senders=senders,
receivers=receivers,
)
def _decoder_postprocessor(self, normalized_acceleration, position_sequence):
# The model produces the output in normalized space so we apply inverse
# normalization.
acceleration_stats = self._normalization_stats["acceleration"]
acceleration = (
normalized_acceleration * acceleration_stats.std
) + acceleration_stats.mean
# Use an Euler integrator to go from acceleration to position, assuming
# a dt=1 corresponding to the size of the finite difference.
most_recent_position = position_sequence[:, -1]
most_recent_velocity = most_recent_position - position_sequence[:, -2]
new_velocity = most_recent_velocity + acceleration # * dt = 1
new_position = most_recent_position + new_velocity # * dt = 1
return new_position
def get_predicted_and_target_normalized_accelerations(
self, next_position, position_sequence_noise, position_sequence,
n_particles_per_example, global_context=None, particle_types=None): # pylint: disable=g-doc-args
"""Produces normalized and predicted acceleration targets.
Args:
next_position: Tensor of shape [num_particles_in_batch, num_dimensions]
with the positions the model should output given the inputs.
position_sequence_noise: Tensor of the same shape as `position_sequence`
with the noise to apply to each particle.
position_sequence, n_node, global_context, particle_types: Inputs to the
model as defined by `_build`.
Returns:
Tensors of shape [num_particles_in_batch, num_dimensions] with the
predicted and target normalized accelerations.
"""
# Add noise to the input position sequence.
noisy_position_sequence = position_sequence + position_sequence_noise
# Perform the forward pass with the noisy position sequence.
input_graphs_tuple = self._encoder_preprocessor(
noisy_position_sequence, n_particles_per_example, global_context,
particle_types)
predicted_normalized_acceleration = self._graph_network(input_graphs_tuple)
# Calculate the target acceleration, using an `adjusted_next_position `that
# is shifted by the noise in the last input position.
next_position_adjusted = next_position + position_sequence_noise[:, -1]
target_normalized_acceleration = self._inverse_decoder_postprocessor(
next_position_adjusted, noisy_position_sequence)
# As a result the inverted Euler update in the `_inverse_decoder` produces:
# * A target acceleration that does not explicitly correct for the noise in
# the input positions, as the `next_position_adjusted` is different
# from the true `next_position`.
# * A target acceleration that exactly corrects noise in the input velocity
# since the target next velocity calculated by the inverse Euler update
# as `next_position_adjusted - noisy_position_sequence[:,-1]`
# matches the ground truth next velocity (noise cancels out).
return predicted_normalized_acceleration, target_normalized_acceleration
def _inverse_decoder_postprocessor(self, next_position, position_sequence):
"""Inverse of `_decoder_postprocessor`."""
previous_position = position_sequence[:, -1]
previous_velocity = previous_position - position_sequence[:, -2]
next_velocity = next_position - previous_position
acceleration = next_velocity - previous_velocity
acceleration_stats = self._normalization_stats["acceleration"]
normalized_acceleration = (
acceleration - acceleration_stats.mean) / acceleration_stats.std
return normalized_acceleration
def time_diff(input_sequence):
return input_sequence[:, 1:] - input_sequence[:, :-1]