-
Notifications
You must be signed in to change notification settings - Fork 7
/
MitoEM-R-BC.yaml
53 lines (52 loc) · 1.95 KB
/
MitoEM-R-BC.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# For binary mask & instance contour prediction.
# All other configurations are set by default. If you want to add new config options,
# please modify ../connectomics/config/config.py
# 30x8x8 nm in (z,y,x), 1000x4096x4096 voxel
SYSTEM:
NUM_GPUS: 2
NUM_CPUS: 8
MODEL:
ARCHITECTURE: 'unet_residual_3d' # 'unet_residual_3d' for res-unet-r and 'rsunet' for res-unet-h
FILTERS: [28, 36, 48, 64, 80]
INPUT_SIZE: [36, 320, 320]
OUTPUT_SIZE: [36, 320, 320]
IN_PLANES: 1
OUT_PLANES: 2
LOSS_OPTION: [['DiceLoss', 'WeightedBCE'], ['DiceLoss', 'WeightedBCE']]
LOSS_WEIGHT: [[0, 1], [0, 1]]
# LOSS_OPTION: [['WeightedBCE'], ['WeightedBCE']]
# LOSS_WEIGHT: [[1], [1]]
TARGET_OPT: ['0','4-2-1'] # Multi-task learning: binary mask, instance segmentation
WEIGHT_OPT: [['1'],['1']]
DATASET:
IMAGE_NAME: 'configs/MitoEM/im_train_rat.json'
LABEL_NAME: 'configs/MitoEM/mito_train_rat.json'
INPUT_PATH: '/braindat/lab/limx/MitoEM2021/CODE/HUMAN/rsunet_retrain_297000_v2/' # work container
# inference: save model
INFERENCE_PATH: '/braindat/lab/limx/MitoEM2021/CODE/HUMAN/rsunet_retrain_297000_v2/'
OUTPUT_PATH: 'outputs/dataset_output'
PAD_SIZE: [0, 0, 0] # [16, 128, 128] # Mirror padding of big chunk
DO_CHUNK_TITLE: 1 # json file reading
DATA_CHUNK_NUM: [8, 2, 2] # [8, 2, 2] # block number of each axis.
DATA_CHUNK_ITER: 2500 # sample times of per chunk
LABEL_EROSION: 1
USE_LABEL_SMOOTH: False
LABEL_SMOOTH: 0.1
SOLVER:
LR_SCHEDULER_NAME: "WarmupMultiStepLR"
BASE_LR: 1e-04
ITERATION_STEP: 1 # How many iterations return loss once
ITERATION_SAVE: 1500 # save model
ITERATION_TOTAL: 200000 # total iteration
SAMPLES_PER_BATCH: 2 #
INFERENCE:
INPUT_SIZE: [32, 256, 256]
OUTPUT_SIZE: [32, 256, 256]
IMAGE_NAME: 'configs/MitoEM/im_val_rat.json'
OUTPUT_PATH: 'outputs/inference_output'
OUTPUT_NAME: 'result.h5'
PAD_SIZE: [16, 128, 128]
AUG_MODE: 'mean'
AUG_NUM: 0
STRIDE: [16, 128, 128] # [16, 128, 128]
SAMPLES_PER_BATCH: 48