-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpreprocess_sf_argoverse.py
271 lines (215 loc) · 11.3 KB
/
preprocess_sf_argoverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import copy
import glob
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional
import argoverse.data_loading.object_label_record as object_label
import numpy as np
import open3d as o3d
from argoverse.map_representation.map_api import ArgoverseMap
from argoverse.utils.cuboid_interior import filter_point_cloud_to_bbox_3D_vectorized
from argoverse.utils.json_utils import read_json_file
from argoverse.utils.ply_loader import load_ply
from argoverse.utils.se3 import SE3
from argoverse.utils.transform import quat2rotmat
from torch.utils.data import Dataset
class PreProcessArgoverseDataset(Dataset):
def __init__(
self,
dataset_path='',
partition='val',
remove_ground=True,
get_gt_tracks=True,
max_correspondence_distance=1.0,
log_id=None,
):
self.partition = partition
self.log_id = log_id
self.remove_ground = remove_ground
self.get_gt_tracks = get_gt_tracks
self.max_correspondence_distance = max_correspondence_distance
if self.partition == 'train':
self.datapath = sorted(glob.glob(f"{dataset_path}/training/*/*/lidar/*"))
elif self.partition == 'test':
self.datapath = sorted(glob.glob(f"{dataset_path}/testing/*/*/lidar/*"))
elif self.partition == 'val':
self.datapath = sorted(glob.glob(f"{dataset_path}/val/*/lidar/*"))
if self.log_id:
self.datapath = [file for file in self.datapath if log_id in file]
if self.partition == "train":
sample_every = 2
else:
sample_every = 10 # To don't get too repetitive for validation.
self.datapath = self.datapath[0:-1:sample_every]
self.avm = ArgoverseMap()
def __getitem__(self, index):
filename = self.datapath[index]
print(filename)
log_id = filename.split('/')[-3]
dataset_dir = filename.split(log_id)[0]
city_info_fpath = f"{dataset_dir}/{log_id}/city_info.json"
city_info = read_json_file(city_info_fpath)
city_name = city_info['city_name']
'''Get consecutive point clouds.'''
lidar_sweep_fnames = sorted(glob.glob(f"{dataset_dir}{log_id}/lidar/PC_*"))
lidar_sweep_idx = lidar_sweep_fnames.index(filename)
if lidar_sweep_idx == len(lidar_sweep_fnames) - 1:
lidar_sweep_idx = lidar_sweep_idx - 1
lidar_sweeps = get_lidar_sweeps(lidar_sweep_fnames, lidar_sweep_idx, self.width)
if self.remove_ground:
for i, lidar_sweep in enumerate(lidar_sweeps):
pc_t = lidar_sweep.pose.transform_point_cloud(lidar_sweep.ply)
_, not_ground_logicals = self.avm.remove_ground_surface(copy.deepcopy(pc_t), city_name, return_logicals=True)
pc_t = pc_t[not_ground_logicals]
lidar_sweeps[i].ply = lidar_sweep.pose.inverse_transform_point_cloud(pc_t).astype('float32')
# ANCHOR: remove non drivable area
drivable_area = False
if drivable_area:
for i, lidar_sweep in enumerate(lidar_sweeps):
pc_t = lidar_sweep.pose.transform_point_cloud(lidar_sweep.ply)
pc_t = self.avm.remove_non_driveable_area_points(pc_t, city_name)
lidar_sweeps[i].ply = lidar_sweep.pose.inverse_transform_point_cloud(pc_t).astype('float32')
# ANCHOR: remove points above certain height.
max_height = 4.0
for i, lidar_sweep in enumerate(lidar_sweeps):
indices = np.where(lidar_sweeps[i].ply[:, 2] <= max_height)[0]
lidar_sweeps[i].ply = lidar_sweeps[i].ply[indices]
# ANCHOR: remove points beyond certain distance.
max_dist = 80
for i, lidar_sweep in enumerate(lidar_sweeps):
pc_o3d = o3d.geometry.PointCloud()
pc_o3d.points = o3d.utility.Vector3dVector(lidar_sweeps[i].ply)
dists_to_center = np.sqrt(np.sum(lidar_sweeps[i].ply ** 2, 1))
ind = np.where(dists_to_center <= max_dist)[0]
lidar_sweeps[i].ply = lidar_sweeps[i].ply[ind]
# ANCHOR: get pseudo flow annotations
if self.get_gt_tracks:
n1 = lidar_sweeps[0].ply.shape[0]
tracks1_fpath = f"{dataset_dir}{log_id}/per_sweep_annotations_amodal/tracked_object_labels_{lidar_sweeps[0].timestamp}.json"
tracks2_fpath = f"{dataset_dir}{log_id}/per_sweep_annotations_amodal/tracked_object_labels_{lidar_sweeps[1].timestamp}.json"
objects1 = object_label.read_label(tracks1_fpath)
objects2 = object_label.read_label(tracks2_fpath)
objects2_track_id_dict = {object2.track_id:object2 for object2 in objects2}
mask1_tracks_flow = []
mask2_tracks_flow = []
flow = np.zeros((n1, 3), dtype='float32')
for object1 in objects1:
if object1.occlusion == 100:
continue
if object1.track_id in objects2_track_id_dict:
object2 = objects2_track_id_dict[object1.track_id]
obj_pose1 = SE3(rotation=quat2rotmat(object1.quaternion), translation=np.array(object1.translation))
obj_pose2 = SE3(rotation=quat2rotmat(object2.quaternion), translation=np.array(object2.translation))
relative_pose_1_2 = obj_pose2.right_multiply_with_se3(obj_pose1.inverse())
# Add a margin to the cuboids. Some cuboids are very tight and might lose some points.
margin = 0.6
object1.length = object1.length + margin
object1.height = object1.height + margin
object1.width = object1.width + margin
bbox1_3d = object1.as_3d_bbox()
inbox_pc1, is_valid = filter_point_cloud_to_bbox_3D_vectorized(bbox1_3d, lidar_sweeps[0].ply)
indices = np.where(is_valid == True)[0]
mask1_tracks_flow.append(indices)
inbox_pc1_t = relative_pose_1_2.transform_point_cloud(inbox_pc1)
translation = inbox_pc1_t - inbox_pc1
flow[indices, :] = translation
bbox2_3d = object2.as_3d_bbox()
inbox_pc2, is_valid2 = filter_point_cloud_to_bbox_3D_vectorized(bbox2_3d, lidar_sweeps[1].ply)
mask2_tracks_flow.append(np.where(is_valid2 == True)[0])
# Compensate egomotion to get rigid flow.
map_relative_to_base = lidar_sweeps[1].pose
map_relative_to_other = lidar_sweeps[0].pose
other_to_base = map_relative_to_base.inverse().right_multiply_with_se3(map_relative_to_other)
points = lidar_sweeps[0].ply
points_t = other_to_base.transform_point_cloud(points)
mask1_tracks_flow = np.unique(np.hstack(mask1_tracks_flow))
mask2_tracks_flow = np.unique(np.hstack(mask2_tracks_flow))
# NOTE: refine the rigid registration with ICP (without the tracks), this might be unnecessary since the given ego pose is pretty good already
full_mask1 = np.arange(len(lidar_sweeps[0].ply))
full_mask2 = np.arange(len(lidar_sweeps[1].ply))
mask1_no_tracks = np.setdiff1d(full_mask1, mask1_tracks_flow, assume_unique=True)
mask2_no_tracks = np.setdiff1d(full_mask2, mask2_tracks_flow, assume_unique=True)
pc1_o3d = o3d.geometry.PointCloud()
pc1_o3d.points = o3d.utility.Vector3dVector(points_t[mask1_no_tracks])
pc2_o3d = o3d.geometry.PointCloud()
pc2_o3d.points = o3d.utility.Vector3dVector(lidar_sweeps[1].ply[mask2_no_tracks])
# Apply point-to-point ICP
trans_init = np.identity(4)
reg_p2p = o3d.registration.registration_icp(
pc1_o3d, pc2_o3d,
self.max_correspondence_distance,
trans_init,
o3d.registration.TransformationEstimationPointToPoint(),
o3d.registration.ICPConvergenceCriteria(max_iteration=100)
)
pc1_t_o3d = pc1_o3d.transform(reg_p2p.transformation)
points_t_refined = np.asarray(pc1_t_o3d.points)
rigid_flow = points_t_refined - points[mask1_no_tracks]
flow[mask1_no_tracks] = rigid_flow
'''Get point clouds.'''
pc1 = lidar_sweeps[0].ply
pc2 = lidar_sweeps[1].ply
# ANCHOR: save processed flow
dataset_path = filename.split('argoverse-tracking')[0] + 'Argoverse_SceneFlow_remove_ground' + filename.split('argoverse-tracking')[1].split('lidar')[0]
outfile = str(lidar_sweeps[0].timestamp) + '_' + str(lidar_sweeps[1].timestamp) + '.npz'
full_path = dataset_path + outfile
Path(dataset_path).mkdir(parents=True, exist_ok=True)
np.savez_compressed(full_path, pc1=pc1, pc2=pc2, flow=flow, mask1_tracks_flow=mask1_tracks_flow, mask2_tracks_flow=mask2_tracks_flow)
def __len__(self):
return len(self.datapath)
@dataclass
class PlyWithPose:
"""Struct to hold ply and pose data."""
ply: np.ndarray
pose: SE3
timestamp: int
def get_lidar_sweeps(base_directory: Path, sweep_index: int, width: int) -> Optional[List[PlyWithPose]]:
"""Get the lidar sweep from the given sweep_directory.
Args:
sweep_directory: path to middle lidar sweep.
sweep_index: index of the middle lidar sweep.
width: +/- lidar scans to grab.
Returns:
List of plys with their associated pose if all the sweeps exist.
"""
sweeps = []
n_forward = width
start = sweep_index
end = start + n_forward
if start < 0:
start = 0
if end >= len(base_directory):
end = len(base_directory) - 1
for step_index in range(start, end + 1):
sweep_path = base_directory[step_index]
ply = load_ply(sweep_path)
if ply is None:
return None
ply_timestamp = sweep_path.split('PC_')[1].split('.')[0]
log_path = base_directory[0].split('lidar')[0]
pose_fname = glob.glob(f"{log_path}/poses/city_SE3_egovehicle_{ply_timestamp}.json")[0]
pose_ = read_json_file(pose_fname)
pose = SE3(rotation=quat2rotmat(pose_['rotation']), translation=np.array(pose_['translation']))
timestamp = int(sweep_path.split('/')[-1].split('_')[1][:-4])
if pose is None:
return None
bundle = PlyWithPose(ply, pose, timestamp)
sweeps.append(bundle)
return sweeps
if __name__ == "__main__":
dataset_path = '/dataset/argo/argoverse-tracking' # NOTE: path to the original dataset
# ANCHOR: hyperparameters
remove_ground = True
get_gt_tracks = True
partition = "val"
max_correspondence_distance = 1.0
dataset = PreProcessArgoverseDataset(
dataset_path=dataset_path,
partition=partition, # 'train' or 'val' only
remove_ground=remove_ground,
get_gt_tracks=get_gt_tracks,
max_correspondence_distance=max_correspondence_distance,
)
for data in dataset:
print('start preprocessing scene flow dataset')