-
Notifications
You must be signed in to change notification settings - Fork 411
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
imports: deprecate from pkg root [3/n] Image (#1696)
- Loading branch information
Showing
7 changed files
with
627 additions
and
48 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
from typing import Optional, Sequence, Tuple, Union | ||
|
||
from torch import Tensor | ||
from typing_extensions import Literal | ||
|
||
from torchmetrics.functional.image.d_lambda import spectral_distortion_index | ||
from torchmetrics.functional.image.ergas import error_relative_global_dimensionless_synthesis | ||
from torchmetrics.functional.image.gradients import image_gradients | ||
from torchmetrics.functional.image.psnr import peak_signal_noise_ratio | ||
from torchmetrics.functional.image.rase import relative_average_spectral_error | ||
from torchmetrics.functional.image.rmse_sw import root_mean_squared_error_using_sliding_window | ||
from torchmetrics.functional.image.sam import spectral_angle_mapper | ||
from torchmetrics.functional.image.ssim import ( | ||
multiscale_structural_similarity_index_measure, | ||
structural_similarity_index_measure, | ||
) | ||
from torchmetrics.functional.image.tv import total_variation | ||
from torchmetrics.functional.image.uqi import universal_image_quality_index | ||
from torchmetrics.utilities.prints import _deprecated_root_import_func | ||
|
||
|
||
def _spectral_distortion_index( | ||
preds: Tensor, | ||
target: Tensor, | ||
p: int = 1, | ||
reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean", | ||
) -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> _ = torch.manual_seed(42) | ||
>>> preds = torch.rand([16, 3, 16, 16]) | ||
>>> target = torch.rand([16, 3, 16, 16]) | ||
>>> _spectral_distortion_index(preds, target) | ||
tensor(0.0234) | ||
""" | ||
_deprecated_root_import_func("spectral_distortion_index", "image") | ||
return spectral_distortion_index(preds=preds, target=target, p=p, reduction=reduction) | ||
|
||
|
||
def _error_relative_global_dimensionless_synthesis( | ||
preds: Tensor, | ||
target: Tensor, | ||
ratio: Union[int, float] = 4, | ||
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", | ||
) -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) | ||
>>> target = preds * 0.75 | ||
>>> ergds = _error_relative_global_dimensionless_synthesis(preds, target) | ||
>>> torch.round(ergds) | ||
tensor(154.) | ||
""" | ||
_deprecated_root_import_func("error_relative_global_dimensionless_synthesis", "image") | ||
return error_relative_global_dimensionless_synthesis(preds=preds, target=target, ratio=ratio, reduction=reduction) | ||
|
||
|
||
def _image_gradients(img: Tensor) -> Tuple[Tensor, Tensor]: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> image = torch.arange(0, 1*1*5*5, dtype=torch.float32) | ||
>>> image = torch.reshape(image, (1, 1, 5, 5)) | ||
>>> dy, dx = _image_gradients(image) | ||
>>> dy[0, 0, :, :] | ||
tensor([[5., 5., 5., 5., 5.], | ||
[5., 5., 5., 5., 5.], | ||
[5., 5., 5., 5., 5.], | ||
[5., 5., 5., 5., 5.], | ||
[0., 0., 0., 0., 0.]]) | ||
""" | ||
_deprecated_root_import_func("image_gradients", "image") | ||
return image_gradients(img=img) | ||
|
||
|
||
def _peak_signal_noise_ratio( | ||
preds: Tensor, | ||
target: Tensor, | ||
data_range: Optional[Union[float, Tuple[float, float]]] = None, | ||
base: float = 10.0, | ||
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", | ||
dim: Optional[Union[int, Tuple[int, ...]]] = None, | ||
) -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> from torch import tensor | ||
>>> pred = tensor([[0.0, 1.0], [2.0, 3.0]]) | ||
>>> target = tensor([[3.0, 2.0], [1.0, 0.0]]) | ||
>>> _peak_signal_noise_ratio(pred, target) | ||
tensor(2.5527) | ||
""" | ||
_deprecated_root_import_func("peak_signal_noise_ratio", "image") | ||
return peak_signal_noise_ratio( | ||
preds=preds, target=target, data_range=data_range, base=base, reduction=reduction, dim=dim | ||
) | ||
|
||
|
||
def _relative_average_spectral_error(preds: Tensor, target: Tensor, window_size: int = 8) -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> g = torch.manual_seed(22) | ||
>>> preds = torch.rand(4, 3, 16, 16) | ||
>>> target = torch.rand(4, 3, 16, 16) | ||
>>> _relative_average_spectral_error(preds, target) | ||
tensor(5114.6641) | ||
""" | ||
_deprecated_root_import_func("relative_average_spectral_error", "image") | ||
return relative_average_spectral_error(preds=preds, target=target, window_size=window_size) | ||
|
||
|
||
def _root_mean_squared_error_using_sliding_window( | ||
preds: Tensor, target: Tensor, window_size: int = 8, return_rmse_map: bool = False | ||
) -> Union[Optional[Tensor], Tuple[Optional[Tensor], Tensor]]: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> g = torch.manual_seed(22) | ||
>>> preds = torch.rand(4, 3, 16, 16) | ||
>>> target = torch.rand(4, 3, 16, 16) | ||
>>> _root_mean_squared_error_using_sliding_window(preds, target) | ||
tensor(0.3999) | ||
""" | ||
_deprecated_root_import_func("root_mean_squared_error_using_sliding_window", "image") | ||
return root_mean_squared_error_using_sliding_window( | ||
preds=preds, target=target, window_size=window_size, return_rmse_map=return_rmse_map | ||
) | ||
|
||
|
||
def _spectral_angle_mapper( | ||
preds: Tensor, | ||
target: Tensor, | ||
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", | ||
) -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> preds = torch.rand([16, 3, 16, 16], generator=torch.manual_seed(42)) | ||
>>> target = torch.rand([16, 3, 16, 16], generator=torch.manual_seed(123)) | ||
>>> _spectral_angle_mapper(preds, target) | ||
tensor(0.5943) | ||
""" | ||
_deprecated_root_import_func("spectral_angle_mapper", "image") | ||
return spectral_angle_mapper(preds=preds, target=target, reduction=reduction) | ||
|
||
|
||
def _multiscale_structural_similarity_index_measure( | ||
preds: Tensor, | ||
target: Tensor, | ||
gaussian_kernel: bool = True, | ||
sigma: Union[float, Sequence[float]] = 1.5, | ||
kernel_size: Union[int, Sequence[int]] = 11, | ||
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", | ||
data_range: Optional[Union[float, Tuple[float, float]]] = None, | ||
k1: float = 0.01, | ||
k2: float = 0.03, | ||
betas: Tuple[float, ...] = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333), | ||
normalize: Optional[Literal["relu", "simple"]] = "relu", | ||
) -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> preds = torch.rand([3, 3, 256, 256], generator=torch.manual_seed(42)) | ||
>>> target = preds * 0.75 | ||
>>> _multiscale_structural_similarity_index_measure(preds, target, data_range=1.0) | ||
tensor(0.9627) | ||
""" | ||
_deprecated_root_import_func("multiscale_structural_similarity_index_measure", "image") | ||
return multiscale_structural_similarity_index_measure( | ||
preds=preds, | ||
target=target, | ||
gaussian_kernel=gaussian_kernel, | ||
sigma=sigma, | ||
kernel_size=kernel_size, | ||
reduction=reduction, | ||
data_range=data_range, | ||
k1=k1, | ||
k2=k2, | ||
betas=betas, | ||
normalize=normalize, | ||
) | ||
|
||
|
||
def _structural_similarity_index_measure( | ||
preds: Tensor, | ||
target: Tensor, | ||
gaussian_kernel: bool = True, | ||
sigma: Union[float, Sequence[float]] = 1.5, | ||
kernel_size: Union[int, Sequence[int]] = 11, | ||
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", | ||
data_range: Optional[Union[float, Tuple[float, float]]] = None, | ||
k1: float = 0.01, | ||
k2: float = 0.03, | ||
return_full_image: bool = False, | ||
return_contrast_sensitivity: bool = False, | ||
) -> Union[Tensor, Tuple[Tensor, Tensor]]: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> preds = torch.rand([3, 3, 256, 256]) | ||
>>> target = preds * 0.75 | ||
>>> _structural_similarity_index_measure(preds, target) | ||
tensor(0.9219) | ||
""" | ||
_deprecated_root_import_func("spectral_angle_mapper", "image") | ||
return structural_similarity_index_measure( | ||
preds=preds, | ||
target=target, | ||
gaussian_kernel=gaussian_kernel, | ||
sigma=sigma, | ||
kernel_size=kernel_size, | ||
reduction=reduction, | ||
data_range=data_range, | ||
k1=k1, | ||
k2=k2, | ||
return_full_image=return_full_image, | ||
return_contrast_sensitivity=return_contrast_sensitivity, | ||
) | ||
|
||
|
||
def _total_variation(img: Tensor, reduction: Literal["mean", "sum", "none", None] = "sum") -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> _ = torch.manual_seed(42) | ||
>>> img = torch.rand(5, 3, 28, 28) | ||
>>> _total_variation(img) | ||
tensor(7546.8018) | ||
""" | ||
_deprecated_root_import_func("total_variation", "image") | ||
return total_variation(img=img, reduction=reduction) | ||
|
||
|
||
def _universal_image_quality_index( | ||
preds: Tensor, | ||
target: Tensor, | ||
kernel_size: Sequence[int] = (11, 11), | ||
sigma: Sequence[float] = (1.5, 1.5), | ||
reduction: Optional[Literal["elementwise_mean", "sum", "none"]] = "elementwise_mean", | ||
data_range: Optional[float] = None, | ||
) -> Tensor: | ||
"""Wrapper for deprecated import. | ||
>>> import torch | ||
>>> preds = torch.rand([16, 1, 16, 16]) | ||
>>> target = preds * 0.75 | ||
>>> _universal_image_quality_index(preds, target) | ||
tensor(0.9216) | ||
""" | ||
_deprecated_root_import_func("universal_image_quality_index", "image") | ||
return universal_image_quality_index( | ||
preds=preds, target=target, kernel_size=kernel_size, sigma=sigma, reduction=reduction, data_range=data_range | ||
) |
Oops, something went wrong.