diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md index b7f3574f62f99..546f5bc2ef8fa 100644 --- a/.github/ISSUE_TEMPLATE/bug_report.md +++ b/.github/ISSUE_TEMPLATE/bug_report.md @@ -16,11 +16,11 @@ assignees: '' Please reproduce using the BoringModel! You can use the following Colab link: -https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/The_BoringModel.ipynb +https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/bug_report_model.ipynb IMPORTANT: has to be public. or this simple template: -https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report_model.py +https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/bug_report_model.py If you could not reproduce using the BoringModel and still think there's a bug, please post here but remember, bugs with code are fixed faster! @@ -46,9 +46,9 @@ python collect_env_details.py You can also fill out the list below manually. --> -- PyTorch Lightning Version (e.g., 1.3.0): -- PyTorch Version (e.g., 1.8) -- Python version: +- PyTorch Lightning Version (e.g., 1.5.0): +- PyTorch Version (e.g., 1.10): +- Python version (e.g., 3.9): - OS (e.g., Linux): - CUDA/cuDNN version: - GPU models and configuration: diff --git a/docs/source/advanced/fault_tolerant_training.rst b/docs/source/advanced/fault_tolerant_training.rst index e4a61b27e294d..63a3ce41ee8b3 100644 --- a/docs/source/advanced/fault_tolerant_training.rst +++ b/docs/source/advanced/fault_tolerant_training.rst @@ -134,7 +134,7 @@ Performance Impacts ------------------- Fault-tolerant Training was tested on common and worst-case scenarios in order to measure the impact of the internal state tracking on the total training time. -On tiny models like the `BoringModel and RandomDataset `_ +On tiny models like the `BoringModel and RandomDataset `_ which has virtually no data loading and processing overhead, we noticed up to 50% longer training time with fault tolerance enabled. In this worst-case scenario, fault-tolerant adds an overhead that is noticeable in comparison to the compute time for dataloading itself. However, for more realistic training workloads where data loading and preprocessing is more expensive, the constant overhead that fault tolerance adds becomes less noticeable or not noticeable at all. diff --git a/pl_examples/bug_report/The_BoringModel.ipynb b/pl_examples/bug_report/The_BoringModel.ipynb deleted file mode 100644 index 9b061c4283cbf..0000000000000 --- a/pl_examples/bug_report/The_BoringModel.ipynb +++ /dev/null @@ -1,1420 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "The BoringModel.ipynb", - "provenance": [], - "collapsed_sections": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "accelerator": "GPU", - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "d79c1628eded487a974da18a2ea1f98b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HBoxView", - "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.5.0", - "box_style": "", - "layout": "IPY_MODEL_02695b143b764932ba8d0c08a872987e", - "_model_module": "@jupyter-widgets/controls", - "children": [ - "IPY_MODEL_28eb6a3218f64f26abcdff756ffda3ad", - "IPY_MODEL_02cfffd590014c3cbc44ab06c69f9181", - "IPY_MODEL_0d7c50e36cb84f01a57a9d7d8b913393" - ] - } - }, - "02695b143b764932ba8d0c08a872987e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": "row wrap", - "width": "100%", - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": "inline-flex", - "left": null - } - }, - "28eb6a3218f64f26abcdff756ffda3ad": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_6ba2782883ae424dbfc8868224d95da9", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": "Epoch 0: 100%", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_baa4aacd0da64cf291fb31c000724573" - } - }, - "02cfffd590014c3cbc44ab06c69f9181": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "ProgressView", - "style": "IPY_MODEL_7dad3d2feced492a999fb6c91186be50", - "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", - "bar_style": "success", - "max": 2, - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": 2, - "_view_count": null, - "_view_module_version": "1.5.0", - "orientation": "horizontal", - "min": 0, - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_ea702a091eb642f7bdda81aa55db8c26" - } - }, - "0d7c50e36cb84f01a57a9d7d8b913393": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_4802a47c6dfb439c83d8b860dce42006", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": " 2/2 [00:00<00:00, 9.45it/s, loss=-0.618, v_num=0]", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_68c87e6a7fcf4e4eab98a941c7c3e867" - } - }, - "6ba2782883ae424dbfc8868224d95da9": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" - } - }, - "baa4aacd0da64cf291fb31c000724573": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "7dad3d2feced492a999fb6c91186be50": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "bar_color": null, - "_model_module": "@jupyter-widgets/controls" - } - }, - "ea702a091eb642f7bdda81aa55db8c26": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": "2", - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "4802a47c6dfb439c83d8b860dce42006": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" - } - }, - "68c87e6a7fcf4e4eab98a941c7c3e867": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "e6cbe583c2e14986b4faeb27e31f73e1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HBoxView", - "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.5.0", - "box_style": "", - "layout": "IPY_MODEL_672dd78899f944cea7e57f388f3ecb31", - "_model_module": "@jupyter-widgets/controls", - "children": [ - "IPY_MODEL_cd61dda59d104e0a8a8aa9bfc1e55c24", - "IPY_MODEL_1cd72d82332941a6929f88fad5173096", - "IPY_MODEL_92a38638060c4ed5b6d44a2078667e53" - ] - } - }, - "672dd78899f944cea7e57f388f3ecb31": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": "row wrap", - "width": "100%", - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": "inline-flex", - "left": null - } - }, - "cd61dda59d104e0a8a8aa9bfc1e55c24": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_bdc9b06391ee47478efd58cc91ca87ac", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": "Validating: 0%", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_ee80657d62c6452d9e9ac199157cdf2a" - } - }, - "1cd72d82332941a6929f88fad5173096": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "ProgressView", - "style": "IPY_MODEL_eb16b87bcb8d4ca6a83e8b44ea2d1311", - "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", - "bar_style": "", - "max": 1, - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": 1, - "_view_count": null, - "_view_module_version": "1.5.0", - "orientation": "horizontal", - "min": 0, - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_2a6327dd568241e3acbb6aec1926bd80" - } - }, - "92a38638060c4ed5b6d44a2078667e53": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_a45aba8517e14654850453159780b54a", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": " 0/1 [00:00<?, ?it/s]", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_7fb167222e7143b789b7f40af7cb39dd" - } - }, - "bdc9b06391ee47478efd58cc91ca87ac": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" - } - }, - "ee80657d62c6452d9e9ac199157cdf2a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "eb16b87bcb8d4ca6a83e8b44ea2d1311": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "bar_color": null, - "_model_module": "@jupyter-widgets/controls" - } - }, - "2a6327dd568241e3acbb6aec1926bd80": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": "2", - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "a45aba8517e14654850453159780b54a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" - } - }, - "7fb167222e7143b789b7f40af7cb39dd": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "abe1c0c4dac94e0e9b894bb69c3ec450": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HBoxView", - "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.5.0", - "box_style": "", - "layout": "IPY_MODEL_23763e19d40d4020b3342a47366e2e19", - "_model_module": "@jupyter-widgets/controls", - "children": [ - "IPY_MODEL_0b7b7da6a6134f0fb26a05adc062ee6f", - "IPY_MODEL_9941635d9d694ba7bce0c7a14c500e5e", - "IPY_MODEL_c7f1407ba92f4dc6ba34bd9cf73fea69" - ] - } - }, - "23763e19d40d4020b3342a47366e2e19": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": "row wrap", - "width": "100%", - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": "inline-flex", - "left": null - } - }, - "0b7b7da6a6134f0fb26a05adc062ee6f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_86f2e0a558cc419e84ed9192ccd3d1b6", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": "Testing: 100%", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_141a9c35ade14d9e8645b2c108ab4d66" - } - }, - "9941635d9d694ba7bce0c7a14c500e5e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "ProgressView", - "style": "IPY_MODEL_833bb79bb1214a3a88795f41b9375690", - "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", - "bar_style": "success", - "max": 1, - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": 1, - "_view_count": null, - "_view_module_version": "1.5.0", - "orientation": "horizontal", - "min": 0, - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_51b32955ad544803b1d78f07bc685569" - } - }, - "c7f1407ba92f4dc6ba34bd9cf73fea69": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_a6b2764a5fa9444a9d77e8d74c67ef47", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": " 32/32 [00:00<00:00, 174.23it/s]", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_3f0c08c03e284ebb905dae8aca72fffc" - } - }, - "86f2e0a558cc419e84ed9192ccd3d1b6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" - } - }, - "141a9c35ade14d9e8645b2c108ab4d66": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "833bb79bb1214a3a88795f41b9375690": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "bar_color": null, - "_model_module": "@jupyter-widgets/controls" - } - }, - "51b32955ad544803b1d78f07bc685569": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": "2", - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "a6b2764a5fa9444a9d77e8d74c67ef47": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" - } - }, - "3f0c08c03e284ebb905dae8aca72fffc": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - } - } - } - }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "rR4_BAUYs3Mb" - }, - "source": [ - "![image.png]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "i7XbLCXGkll9" - }, - "source": [ - "# The Boring Model\n", - "Replicate a bug you experience, using this model.\n", - "\n", - "[Remember! we're always available for support on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2LODD6w9ixlT" - }, - "source": [ - "---\n", - "## Setup env" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "zK7-Gg69kMnG" - }, - "source": [ - "%%capture\n", - "! pip install pytorch-lightning --upgrade" - ], - "execution_count": 1, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WvuSN5jEbY8P" - }, - "source": [ - "---\n", - "## Deps" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "w4_TYnt_keJi" - }, - "source": [ - "import os\n", - "\n", - "import torch\n", - "from torch.utils.data import DataLoader, Dataset\n", - "\n", - "from pytorch_lightning import LightningModule, Trainer" - ], - "execution_count": 2, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XrJDukwPtUnS" - }, - "source": [ - "---\n", - "## Data\n", - "Random data is best for debugging. If you needs special tensor shapes or batch compositions or dataloaders, modify as needed" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "hvgTiaZpkvwS" - }, - "source": [ - "class RandomDataset(Dataset):\n", - " def __init__(self, size, num_samples):\n", - " self.len = num_samples\n", - " self.data = torch.randn(num_samples, size)\n", - "\n", - " def __getitem__(self, index):\n", - " return self.data[index]\n", - "\n", - " def __len__(self):\n", - " return self.len\n" - ], - "execution_count": 3, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "sxVlWjGhl02D" - }, - "source": [ - "num_samples = 10000" - ], - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "V7ELesz1kVQo" - }, - "source": [ - "class BoringModel(LightningModule):\n", - " def __init__(self):\n", - " super().__init__()\n", - " self.layer = torch.nn.Linear(32, 2)\n", - "\n", - " def forward(self, x):\n", - " return self.layer(x)\n", - "\n", - " def training_step(self, batch, batch_idx):\n", - " loss = self(batch).sum()\n", - " self.log(\"train_loss\", loss)\n", - " return {\"loss\": loss}\n", - "\n", - " def validation_step(self, batch, batch_idx):\n", - " loss = self(batch).sum()\n", - " self.log(\"valid_loss\", loss)\n", - "\n", - " def test_step(self, batch, batch_idx):\n", - " loss = self(batch).sum()\n", - " self.log(\"test_loss\", loss)\n", - "\n", - " def configure_optimizers(self):\n", - " return torch.optim.SGD(self.layer.parameters(), lr=0.1)" - ], - "execution_count": 5, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ubvW3LGSupmt" - }, - "source": [ - "---\n", - "## Define the test\n", - "NOTE: in colab, set progress_bar_refresh_rate high or the screen will freeze because of the rapid tqdm update speed." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "4Dk6Ykv8lI7X" - }, - "source": [ - "def run():\n", - " train_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", - " val_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", - " test_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", - "\n", - " model = BoringModel()\n", - " trainer = Trainer(\n", - " default_root_dir=os.getcwd(),\n", - " limit_train_batches=1,\n", - " limit_val_batches=1,\n", - " num_sanity_val_steps=0,\n", - " max_epochs=1,\n", - " enable_model_summary=False,\n", - " )\n", - " trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data)\n", - " trainer.test(model, dataloaders=test_data)" - ], - "execution_count": 6, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4dPfTZVgmgxz" - }, - "source": [ - "---\n", - "## Run Test" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "AAtq1hwSmjKe", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 272, - "referenced_widgets": [ - "d79c1628eded487a974da18a2ea1f98b", - "02695b143b764932ba8d0c08a872987e", - "28eb6a3218f64f26abcdff756ffda3ad", - "02cfffd590014c3cbc44ab06c69f9181", - "0d7c50e36cb84f01a57a9d7d8b913393", - "6ba2782883ae424dbfc8868224d95da9", - "baa4aacd0da64cf291fb31c000724573", - "7dad3d2feced492a999fb6c91186be50", - "ea702a091eb642f7bdda81aa55db8c26", - "4802a47c6dfb439c83d8b860dce42006", - "68c87e6a7fcf4e4eab98a941c7c3e867", - "e6cbe583c2e14986b4faeb27e31f73e1", - "672dd78899f944cea7e57f388f3ecb31", - "cd61dda59d104e0a8a8aa9bfc1e55c24", - "1cd72d82332941a6929f88fad5173096", - "92a38638060c4ed5b6d44a2078667e53", - "bdc9b06391ee47478efd58cc91ca87ac", - "ee80657d62c6452d9e9ac199157cdf2a", - "eb16b87bcb8d4ca6a83e8b44ea2d1311", - "2a6327dd568241e3acbb6aec1926bd80", - "a45aba8517e14654850453159780b54a", - "7fb167222e7143b789b7f40af7cb39dd", - "abe1c0c4dac94e0e9b894bb69c3ec450", - "23763e19d40d4020b3342a47366e2e19", - "0b7b7da6a6134f0fb26a05adc062ee6f", - "9941635d9d694ba7bce0c7a14c500e5e", - "c7f1407ba92f4dc6ba34bd9cf73fea69", - "86f2e0a558cc419e84ed9192ccd3d1b6", - "141a9c35ade14d9e8645b2c108ab4d66", - "833bb79bb1214a3a88795f41b9375690", - "51b32955ad544803b1d78f07bc685569", - "a6b2764a5fa9444a9d77e8d74c67ef47", - "3f0c08c03e284ebb905dae8aca72fffc" - ] - }, - "outputId": "59e8bcf2-a944-46fc-a771-e7cbbbe4727d" - }, - "source": [ - "run()" - ], - "execution_count": 7, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "GPU available: True, used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py:1567: UserWarning: GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\n", - " \"GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\"\n", - "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/data_loading.py:395: UserWarning: The number of training samples (1) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", - " f\"The number of training samples ({self.num_training_batches}) is smaller than the logging interval\"\n" - ] - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d79c1628eded487a974da18a2ea1f98b", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Training: 0it [00:00, ?it/s]" - ] - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e6cbe583c2e14986b4faeb27e31f73e1", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Validating: 0it [00:00, ?it/s]" - ] - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "abe1c0c4dac94e0e9b894bb69c3ec450", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Testing: 0it [00:00, ?it/s]" - ] - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "--------------------------------------------------------------------------------\n", - "DATALOADER:0 TEST RESULTS\n", - "{'test_loss': -1.676544427871704}\n", - "--------------------------------------------------------------------------------\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Flyi--SpvsJN" - }, - "source": [ - "---\n", - "## Environment\n", - "Run this to get the environment details" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "0-yvGFRoaDSi" - }, - "source": [ - "%%capture\n", - "! wget https://raw.githubusercontent.com/PyTorchLightning/pytorch-lightning/master/requirements/collect_env_details.py" - ], - "execution_count": 8, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "quj4LUDgmFvj", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "bb7a5f74-d52c-4927-b12a-49589aed7dcb" - }, - "source": [ - "! python collect_env_details.py" - ], - "execution_count": 9, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "* CUDA:\n", - "\t- GPU:\n", - "\t\t- Tesla K80\n", - "\t- available: True\n", - "\t- version: 11.1\n", - "* Packages:\n", - "\t- numpy: 1.19.5\n", - "\t- pyTorch_debug: False\n", - "\t- pyTorch_version: 1.10.0+cu111\n", - "\t- pytorch-lightning: 1.5.1\n", - "\t- tqdm: 4.62.3\n", - "* System:\n", - "\t- OS: Linux\n", - "\t- architecture:\n", - "\t\t- 64bit\n", - "\t\t- \n", - "\t- processor: x86_64\n", - "\t- python: 3.7.12\n", - "\t- version: #1 SMP Sat Jun 5 09:50:34 PDT 2021\n" - ] - } - ] - } - ] -} diff --git a/pl_examples/bug_report/bug_report_model.ipynb b/pl_examples/bug_report/bug_report_model.ipynb new file mode 100644 index 0000000000000..a6cb1933f113d --- /dev/null +++ b/pl_examples/bug_report/bug_report_model.ipynb @@ -0,0 +1,267 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "accelerator": "GPU", + "colab": { + "name": "bug_report_model.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "rR4_BAUYs3Mb" + }, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i7XbLCXGkll9" + }, + "source": [ + "# The Boring Model\n", + "Replicate a bug you experience, using this model.\n", + "\n", + "[Remember! we're always available for support on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2LODD6w9ixlT" + }, + "source": [ + "---\n", + "## Setup env" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zK7-Gg69kMnG" + }, + "source": [ + "%%capture\n", + "! pip install -qU pytorch-lightning" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WvuSN5jEbY8P" + }, + "source": [ + "---\n", + "## Deps" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "w4_TYnt_keJi" + }, + "source": [ + "import os\n", + "\n", + "import torch\n", + "from torch.utils.data import DataLoader, Dataset\n", + "\n", + "from pytorch_lightning import LightningModule, Trainer" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XrJDukwPtUnS" + }, + "source": [ + "---\n", + "## Data\n", + "Random data is best for debugging. If you needs special tensor shapes or batch compositions or dataloaders, modify as needed" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hvgTiaZpkvwS" + }, + "source": [ + "class RandomDataset(Dataset):\n", + " def __init__(self, size, num_samples):\n", + " self.len = num_samples\n", + " self.data = torch.randn(num_samples, size)\n", + "\n", + " def __getitem__(self, index):\n", + " return self.data[index]\n", + "\n", + " def __len__(self):\n", + " return self.len" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "sxVlWjGhl02D" + }, + "source": [ + "num_samples = 10000" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "V7ELesz1kVQo" + }, + "source": [ + "class BoringModel(LightningModule):\n", + " def __init__(self):\n", + " super().__init__()\n", + " self.layer = torch.nn.Linear(32, 2)\n", + "\n", + " def forward(self, x):\n", + " return self.layer(x)\n", + "\n", + " def training_step(self, batch, batch_idx):\n", + " loss = self(batch).sum()\n", + " self.log(\"train_loss\", loss)\n", + " return {\"loss\": loss}\n", + "\n", + " def validation_step(self, batch, batch_idx):\n", + " loss = self(batch).sum()\n", + " self.log(\"valid_loss\", loss)\n", + "\n", + " def test_step(self, batch, batch_idx):\n", + " loss = self(batch).sum()\n", + " self.log(\"test_loss\", loss)\n", + "\n", + " def configure_optimizers(self):\n", + " return torch.optim.SGD(self.layer.parameters(), lr=0.1)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ubvW3LGSupmt" + }, + "source": [ + "---\n", + "## Define the test" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "4Dk6Ykv8lI7X" + }, + "source": [ + "def run():\n", + " train_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", + " val_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", + " test_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", + "\n", + " model = BoringModel()\n", + " trainer = Trainer(\n", + " default_root_dir=os.getcwd(),\n", + " limit_train_batches=1,\n", + " limit_val_batches=1,\n", + " limit_test_batches=1,\n", + " num_sanity_val_steps=0,\n", + " max_epochs=1,\n", + " enable_model_summary=False,\n", + " )\n", + " trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data)\n", + " trainer.test(model, dataloaders=test_data)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4dPfTZVgmgxz" + }, + "source": [ + "---\n", + "## Run Test" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "AAtq1hwSmjKe" + }, + "source": [ + "run()" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Flyi--SpvsJN" + }, + "source": [ + "---\n", + "## Environment\n", + "Run this to get the environment details" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0-yvGFRoaDSi" + }, + "source": [ + "%%capture\n", + "! wget https://raw.githubusercontent.com/PyTorchLightning/pytorch-lightning/master/requirements/collect_env_details.py" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "quj4LUDgmFvj" + }, + "source": [ + "! python collect_env_details.py" + ], + "execution_count": null, + "outputs": [] + } + ] +} diff --git a/pl_examples/bug_report/bug_report_model.py b/pl_examples/bug_report/bug_report_model.py index 270b0cd2abe8d..7739630237d32 100644 --- a/pl_examples/bug_report/bug_report_model.py +++ b/pl_examples/bug_report/bug_report_model.py @@ -53,6 +53,7 @@ def run(): default_root_dir=os.getcwd(), limit_train_batches=1, limit_val_batches=1, + limit_test_batches=1, num_sanity_val_steps=0, max_epochs=1, enable_model_summary=False,